Collision attacks on small KECCAK

Rachelle Heim Boissier, Yann Rotella

Paris-Saclay University - Versailles University
24 March 2022

Keccak hash functions

- Keccak is a hash function designed by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
- In 2012, four KECCAK instances are standardised as SHA-3
- Permutation-based mode of operation : the sponge construction
- Underlying permutation: Keccak- $f[b], b$ state length in bits
- Standardised instances : $b=1600$
- Instances of interest here : "Small" Keccak $b=200$ or $b=400$

Motivation for the analysis of small КЕссак

- Crunchy contest : cryptanalysis challenges on round-reduced Keccak instances
"Remarkably, the smaller versions are harder to break"
- Small Keccak hash functions used in a proposal for RFID [KY10]

Motivation for the analysis of small KECCAK

Function	Rounds	Complexity (Time)
SHA3-224	2	Practical [NRM11] [HMRS12]
	4	Practical [DDS12]
	5	Practical [GLLQS19]
	2	Practical [NRM11]
SHA3-384	4	Practical [DDS12]
	5	2^{115} [DDS13]
	3	Practical [GLLQS19]
	3	2^{147} [DDS13] 260 [HABYDM22]
	1	Practical [DDS13]

Summary of our results

Parameters	$b=200$	$b=200$	$b=400$
$\left(n_{r}=2\right)$	$\mathrm{c}=160$	$\mathrm{c}=128$	$\mathrm{c}=256$
Generic security	2^{80}	2^{64}	2^{128}
Time complexity of our attack	2^{73}	2^{53}	2^{102}

Implementation \& verification:

- Attack implemented and verified in C on toy versions ($b=100$)
- Practical complexities match the theory

Plan

(1) The sponge construction

(2) The KECCAK-f permutation

(3) Generating inner collisions
(4) An attack example

The sponge construction

- Permutation f is applied to a state of length $b=r+c$, where c is the capacity and r is the bitrate.
- outer state
- inner state
- d is the ouput length

Generic collision attacks on the sponge mode

 Output collisions

- Standardised instances:
- $d<r$
- $c=2 d$
- Small instances
- $d>r$: output collision requires several outer state collisions
- Instead : inner (state) collisions
- Since $d=c$, same generic security as output collisions

Generic collision attacks on the sponge mode

Output collisions

- Standardised instances:
- $d<r$
- $c=2 d$
- Small instances :
- $d>r$: output collision requires several outer state collisions
- Instead : inner (state) collisions
- Since $d=c$, same generic security as output collisions

Generic collision attack on the sponge mode

 Output collisions

- Standardised instances:
- $d<r$
- $c=2 d$
- Small instances
- $d>r$: output collision requires several outer state collisions
- Instead : inner (state) collisions
- Since $d=c$, same generic security as output collisions

Generic collision attack on the sponge mode

Output collisions

- Standardised instances:
- $d<r$
- $c=2 d$
- Small instances :
- $d>r$: output collision requires several outer state collisions
- Instead : inner (state) collisions
- Since $d=c$, same generic security as output collisions

Inner collision attack on small sponges

- Despite $r<d$, the collision propagates to every output

General description of the attack

(1) Generate and absorb a random long message to obtain a random inner state S
(2) Given S, exploit the properties of f to find a message block M such that the inner state of $f(M \| S)$ belongs to a proper subset of \mathbb{F}_{2}^{c}
(3) Find collisions using the birthday paradox

Plan

(1) The sponge construction

(2) The KECCAK-f permutation

(3) Generating inner collisions

(4) An attack example

The KECCAK- f permutation

KECCAK- $f[b]$ operates on a state of length $b=25 \times \omega$ where

$$
\omega \in\{8,16,32,64\}
$$

Figure: Keccak state for $\omega=8$

- A round of KEccak- $f[\mathrm{~b}]: R=\iota \circ \chi \circ \pi \circ \rho \circ \theta$
- We study a round-reduced version with $f=R^{2}$

Permutation θ

Source : https://keccak.team/figures.html

Permutation ρ

Source : https://keccak.team/figures.html

Permutation π

Source: https://keccak.team/figures.html

Permutation χ

$$
\begin{aligned}
b_{0} & =a_{0}+\left(a_{1}+1\right) \times a_{2} \\
b_{1} & =a_{1}+\left(a_{2}+1\right) \times a_{3} \\
b_{2} & =a_{2}+\left(a_{3}+1\right) \times a_{4} \\
b_{3} & =a_{3}+\left(a_{4}+1\right) \times a_{0} \\
b_{4} & =a_{4}+\left(a_{0}+1\right) \times a_{1}
\end{aligned}
$$

Plan

(1) The sponge construction

(2) The KECCAK-f permutation

(3) Generating inner collisions
(4) An attack example

Back to inner collisions

Keccak state with $r=40$, $c=160$. In blue, the inner state

Back to inner collisions

We wish to find a solution to a system of c equations of the form:

$$
\left\{\begin{array}{l}
f_{0}\left(m_{0}, \ldots, m_{r-1}, s_{0}, \ldots, s_{c-1}\right)=f_{0}\left(m_{0}^{\prime}, \ldots, m_{r-1}^{\prime}, s_{0}^{\prime}, \ldots, s_{c-1}^{\prime}\right) \\
f_{1}\left(m_{0}, \ldots, m_{r-1}, s_{0}, \ldots, s_{c-1}\right)=f_{1}\left(m_{0}^{\prime}, \ldots, m_{r-1}^{\prime}, s_{0}^{\prime}, \ldots, s_{c-1}^{\prime}\right) \\
\ldots \\
f_{c-1}\left(m_{0}, \ldots, m_{r-1}, s_{0}, \ldots, s_{c-1}\right)=f_{c-1}\left(m_{0}^{\prime}, \ldots, m_{r-1}^{\prime}, s_{0}^{\prime}, \ldots, s_{c-1}^{\prime}\right)
\end{array}\right.
$$

For KECCAK-f reduced to two rounds, the equations have degree 4.

Back to inner collisions

Keccak state with $r=40$, $c=160$. In blue, the inner state

Two rounds of KECCAK-f

2 rounds of KECCAK- f

Two rounds of KECCAK-f

2 rounds of KECcak- f

Two rounds of KECCAK-f

2 rounds of KECCAK- f

Two rounds of KECCAK-f

2 rounds of KECCAK- f

θ property

Let $a=\left(a_{0}, \ldots, a_{4}\right)$ be a column at the input of θ, let $b=\left(b_{0}, \ldots, b_{4}\right)$ be the same column at the output of θ.

For any $0 \leq i, j<5$,

$$
\begin{aligned}
b_{i} & =a_{i}+c \\
b_{j} & =a_{j}+c
\end{aligned}
$$

and thus

$$
b_{i}+b_{j}=a_{i}+a_{j}
$$

Source : https://keccak.team/figures.html

Exploiting θ 's property

$$
\left\{\begin{array} { l }
{ b _ { 1 } = b _ { 1 } ^ { \prime } } \\
{ b _ { 2 } = b _ { 2 } ^ { \prime } } \\
{ b _ { 3 } = b _ { 3 } ^ { \prime } } \\
{ b _ { 4 } = b _ { 4 } ^ { \prime } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
b_{1}=b_{1}^{\prime} \\
b_{1}+b_{2}=b_{1}^{\prime}+b_{2}^{\prime} \\
b_{2}+b_{3}=b_{2}^{\prime}+b_{3}^{\prime} \\
b_{3}+b_{4}=b_{3}^{\prime}+b_{4}^{\prime}
\end{array}\right.\right.
$$

From θ 's property, we deduce

$$
\left\{\begin{array} { l }
{ b _ { 1 } + b _ { 2 } = b _ { 1 } ^ { \prime } + b _ { 2 } ^ { \prime } } \\
{ b _ { 2 } + b _ { 3 } = b _ { 2 } ^ { \prime } + b _ { 3 } ^ { \prime } } \\
{ b _ { 3 } + b _ { 4 } = b _ { 3 } ^ { \prime } + b _ { 4 } ^ { \prime } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a_{1}+a_{2}=a_{1}^{\prime}+a_{2}^{\prime} \\
a_{2}+a_{3}=a_{2}^{\prime}+a_{3}^{\prime} \\
a_{3}+a_{4}=a_{3}^{\prime}+a_{4}^{\prime}
\end{array}\right.\right.
$$

which is equivalent to

$$
a_{1}+a_{1}^{\prime}=a_{2}+a_{2}^{\prime}=a_{3}+a_{3}^{\prime}=a_{4}+a_{4}^{\prime}
$$

Property

Having a constant difference on k bits of a column is equivalent to satisfying $k-1$ equations of (\mathscr{S}).

Two rounds of KECCAK-f

2 rounds of KECCAK-f
If one generates a set of states that are all constant on columns, then the difference between any two of these states is also constant on columns

χ properties

Linearising χ

Properties

If one sets $a_{4}=0$
(1) b_{2} and b_{3} can be expressed linearly
(2) $b_{4}=0$ with probability $\frac{3}{4}$

$$
\begin{aligned}
& b_{2}=a_{2}+\left(a_{3}+1\right) \times a_{4} \\
& b_{3}=a_{3}+\left(a_{4}+1\right) \times a_{0} \\
& b_{4}=a_{4}+\left(a_{0}+1\right) \times a_{1}
\end{aligned}
$$

Plan

(1) The sponge construction

(2) The KECCAK-f permutation
(3) Generating inner collisions

4 An attack example

Example of allocation strategy on a slice

Setting the blue bits to $0 \rightarrow 3$ linear equations
Ensuring constancy on the yellow bits $\rightarrow 4$ linear equations

We satisty 4 equations of (\mathscr{S})

With probability $\frac{5}{8}$, we satisfy an extra equation of (\mathscr{S})

Example of state allocation strategy

On 5 slices, we set 3 bits to 0$\}$ We add 39
On 1 slice, we set 2 bits to 0$\}$ equations to a linear system

For any pair of state in the output set :

- 21 equations of (\mathscr{S}) are satisfied automatically
- 6 equations of (\mathscr{S}) are satisfied with probability $\left(\frac{17}{32}\right)^{6}$

The probability of inner collision is : $p=2^{21+6-c}\left(\frac{17}{32}\right)^{6}$

Conclusion

The time complexity of our attack is $2 g \sqrt{p^{-1}} \approx 2^{70} g$
where g will be specified (roughly the "cost of finding a solution to the linear system ")

Computing g

(1) The value of g does not depend on the rank of the linear system.

Let e be the size of \mathscr{L}.

- Probability of finding a solution: $2^{\operatorname{rank}(\mathscr{L})-e}$
- Number of free variables: $r-\operatorname{rank}(\mathscr{L})$
- Number of solutions obtained: $2^{r-\operatorname{rank}(\mathscr{L})}$
\rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions. Thus,

$$
g=\frac{e^{3}}{n_{o}} 2^{e-r}
$$

where n_{o} is the number of logical operations in Keccak- f

Computing g

(1) The value of g does not depend on the rank of the linear system.
\rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions. Thus,

$$
g=\frac{e^{3}}{n_{o}} 2^{e-r}
$$

(2) We can precompute the Gaussian elimination
\rightarrow Cost of computing solutions: multiplication matrix-vector in $e \times c$ operations.

Computing g

(1) The value of g does not depend on the rank of the linear system. \rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions.
(2) We can precompute the Gaussian elimination
\rightarrow Cost of computing solutions: multiplication matrix-vector in $e \times c$ operations.

$$
g=\frac{e c}{n_{o}} 2^{e-r}
$$

Computing g

(1) The value of g does not depend on the rank of the linear system. \rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions.
(2) We can precompute the Gaussian elimination
\rightarrow Cost of computing solutions: multiplication matrix-vector in $e \times c$ operations.

$$
g=\frac{e c}{n_{o}} 2^{e-r}
$$

Application to our attack example:

$$
g=\frac{39 \times 161}{410} 2^{-1} \approx 2^{3}
$$

The time complexity is thus of $2^{70+3}=2^{73}$

Conclusion

- Indeed, the smaller versions are hard to break
- Need for a dedicated analysis of small Keccak instances

Thanks to Léo Perrin and Jérémy Jean

Thank you for your attention, questions?

Conclusion

- Indeed, the smaller versions are hard to break
- Need for a dedicated analysis of small KECCAK instances

Thanks to Léo Perrin and Jérémy Jean
Thank you for your attention, questions?

