Collision attacks on small Keccak

Rachelle Heim Boissier, Yann Rotella

Paris-Saclay University - Versailles University

24 March 2022

Rachelle Heim

Collision attacks on small KECCAK

24 March 2022 1 / 28

- KECCAK is a **hash function** designed by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
- $\bullet\,$ In 2012, four $\rm Keccak$ instances are standardised as SHA-3 $\,$
- Permutation-based mode of operation : the sponge construction
- Underlying permutation : KECCAK-f[b], b state length in bits
 - Standardised instances : b = 1600
 - Instances of interest here : "Small" KECCAK b = 200 or b = 400

• **Crunchy contest :** cryptanalysis challenges on round-reduced KECCAK instances

"Remarkably, the smaller versions are harder to break"

• Small KECCAK hash functions used in a proposal for RFID [KY10]

Motivation for the analysis of small Keccak

Function	Rounds	Complexity (Time)	
SHA3-224	2	Practical [NRM11] [HMRS12]	
	4	Practical [DDS12]	
	5	Practical [GLLQS19]	
SHA3-256	2	Practical [NRM11]	
	4	Practical [DDS12]	
	5	2115 [DDS13]	
		Practical [GLLQS19]	
SHA3-384	3	Pactical [DDS13]	
	4	2147 [DDS13] 260 [HABYDM22]	
SHA3-512	3	Practical [DDS13]	
Keccak[40,160,1]	1	Practical [WE17]	

Parameters	b = 200	<i>b</i> = 200	<i>b</i> = 400
$(n_r = 2)$	c = 160	c = 128	c = 256
Generic security	2 ⁸⁰	2 ⁶⁴	2 ¹²⁸
Time complexity of our attack	2 ⁷³	2 ⁵³	2 ¹⁰²

Implementation & verification:

- Attack implemented and verified in C on toy versions (b = 100)
- Practical complexities match the theory

The sponge construction

- 2 The KECCAK-f permutation
- 3 Generating inner collisions
- 4 An attack example

The sponge construction

- Permutation f is applied to a state of length b = r + c, where c is the capacity and r is the bitrate.
- outer state
- inner state
- d is the ouput length

Generic collision attacks on the sponge mode Output collisions

- Standardised instances :
 - *d* < *r*
 - c = 2d

• Small instances :

- d > r: output collision requires several outer state collisions
- Instead : inner (state) collisions
- Since d = c, same generic security as output collisions

Generic collision attacks on the sponge mode Output collisions

- Standardised instances :
 - d < r
 - *c* = 2*d*

Small instances :

- d > r: output collision requires several outer state collisions
- Instead : inner (state) collisions
- Since d = c, same generic security as output collisions

Generic collision attack on the sponge mode Output collisions

- Standardised instances :
 - *d* < *r*
 - c = 2d

• Small instances :

- d > r: output collision requires several outer state collisions
- Instead : inner (state) collisions
- Since d = c, same generic security as output collisions

Generic collision attack on the sponge mode Output collisions

- Standardised instances :
 - d < r
 - *c* = 2*d*
- Small instances :
 - d > r: output collision requires several outer state collisions
 - Instead : inner (state) collisions
 - Since d = c, same generic security as output collisions

Inner collision attack on small sponges

• Despite r < d, the collision propagates to every output

General description of the attack

- Generate and absorb a random long message to obtain a random inner state S
- Given S, exploit the properties of f to find a message block M such that the inner state of f(M||S) belongs to a proper subset of \mathbb{F}_2^c
- Sind collisions using the birthday paradox

2 The KECCAK-*f* permutation

- 3 Generating inner collisions
- 4 An attack example

The KECCAK-f permutation

KECCAK-f[b] operates on a state of length $b = 25 \times \omega$ where $\omega \in \{8, 16, 32, 64\}$

Figure: KECCAK state for $\omega = 8$

- A round of KECCAK-f[b]: $R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$
- We study a round-reduced version with $f = R^2$

Permutation θ

Source : https://keccak.team/figures.html

э

Permutation ρ

Source : https://keccak.team/figures.html

24 March 2022 14 / 2

Source : https://keccak.team/figures.html

Collision attacks on small Keccak

3

<ロト <問ト < 目と < 目と

$$b_0 = a_0 + (a_1 + 1) \times a_2$$

$$b_1 = a_1 + (a_2 + 1) \times a_3$$

$$b_2 = a_2 + (a_3 + 1) \times a_4$$

$$b_3 = a_3 + (a_4 + 1) \times a_0$$

$$b_4 = a_4 + (a_0 + 1) \times a_1$$

イロト イヨト イヨト イヨト

3

- 2 The KECCAK-f permutation
- Generating inner collisions
 - 4 An attack example

Back to inner collisions

Keccak state with r = 40, c = 160. In blue, the inner state

We wish to find a solution to a system of c equations of the form:

$$\begin{cases} f_0(m_0, \dots, m_{r-1}, s_0, \dots, s_{c-1}) = f_0(m'_0, \dots, m'_{r-1}, s'_0, \dots, s'_{c-1}) \\ f_1(m_0, \dots, m_{r-1}, s_0, \dots, s_{c-1}) = f_1(m'_0, \dots, m'_{r-1}, s'_0, \dots, s'_{c-1}) \\ \dots \\ f_{c-1}(m_0, \dots, m_{r-1}, s_0, \dots, s_{c-1}) = f_{c-1}(m'_0, \dots, m'_{r-1}, s'_0, \dots, s'_{c-1}) \end{cases}$$

$$(\mathscr{S})$$

For Keccak-f reduced to two rounds, the equations have degree 4.

Back to inner collisions

Keccak state with r = 40, c = 160. In blue, the inner state

2 rounds of Keccak-f

24 March 2022 19 / 28

2 rounds of Keccak-f

24 March 2022 19 / 28

2 rounds of Keccak-f

2 rounds of Keccak-f

24 March 2022 19 / 28

Let $a = (a_0, ..., a_4)$ be a column at the input of θ , let $b = (b_0, ..., b_4)$ be the same column at the output of θ .

For any $0 \le i, j < 5$,

$$b_i = a_i + c$$
$$b_j = a_j + c$$

and thus

 $b_i + b_j = a_i + a_j$

Source : https://keccak.team/figures.html

24 March 2022 20 / 28

Exploiting θ 's property

$$\begin{cases} b_1 = b'_1 \\ b_2 = b'_2 \\ b_3 = b'_3 \\ b_4 = b'_4 \end{cases} \Leftrightarrow \begin{cases} b_1 = b'_1 \\ b_1 + b_2 = b'_1 + b'_2 \\ b_2 + b_3 = b'_2 + b'_3 \\ b_3 + b_4 = b'_3 + b'_4 \end{cases}$$

From θ 's property, we deduce

$$\begin{cases} b_1 + b_2 = b'_1 + b'_2 \\ b_2 + b_3 = b'_2 + b'_3 \\ b_3 + b_4 = b'_3 + b'_4 \end{cases} \Leftrightarrow \begin{cases} a_1 + a_2 = a'_1 + a'_2 \\ a_2 + a_3 = a'_2 + a'_3 \\ a_3 + a_4 = a'_3 + a'_4 \\ . \end{cases}$$

which is equivalent to

$$a_1 + a_1' = a_2 + a_2' = a_3 + a_3' = a_4 + a_4'$$

Property

Having a constant difference on k bits of a column is equivalent to satisfying k-1 equations of (\mathscr{S}).

2 rounds of Keccak-f

If one generates a set of states that are all constant on columns, then the difference between any two of these states is also constant on columns

χ properties Linearising χ

Properties

If one sets $a_4 = 0$

• b_2 and b_3 can be expressed linearly

2 $b_4 = 0$ with probability $\frac{3}{4}$

$$b_2 = a_2 + (a_3 + 1) \times a_4$$

$$b_3 = a_3 + (a_4 + 1) \times a_0$$

$$b_4 = a_4 + (a_0 + 1) \times a_1$$

The sponge construction

- 2 The KECCAK-f permutation
- 3 Generating inner collisions

An attack example

Example of allocation strategy on a slice

Example of state allocation strategy

For any pair of state in the output set :

- 21 equations of (\mathscr{S}) are satisfied automatically
- 6 equations of ($\mathscr S$) are satisfied with probability $\left(\frac{17}{32}\right)^6$

The probability of inner collision is : $p = 2^{21+6-c} \left(\frac{17}{32}\right)^6$

Conclusion

The time complexity of our attack is $2g\sqrt{p^{-1}} \approx 2^{70}g$

where g will be specified (roughly the "cost of finding a solution to the linear system ")

(1) The value of g does not depend on the rank of the linear system.

Let e be the size of \mathscr{L} .

- Probability of finding a solution : $2^{rank(\mathscr{L})-e}$
- Number of free variables : $r rank(\mathscr{L})$
- Number of solutions obtained : $2^{r-rank(\mathscr{L})}$

 \rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions. Thus,

$$g = \frac{e^3}{n_o} 2^{e-r}$$

where n_o is the number of logical operations in KECCAK-f

(1) The value of g does not depend on the rank of the linear system. \rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions. Thus,

$$g=\frac{e^3}{n_o}2^{e-r}$$

(2) We can **precompute** the Gaussian elimination

 \rightarrow Cost of computing solutions: multiplication matrix-vector in $e \times c$ operations.

Computing g

(1) The value of g does not depend on the rank of the linear system. \rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions.

(2) We can **precompute** the Gaussian elimination \rightarrow Cost of computing solutions: multiplication matrix-vector in $e \times c$ operations.

$$g = \frac{ec}{n_o} 2^{e-r}$$

(1) The value of g does not depend on the rank of the linear system. \rightarrow On average, each Gaussian elimination provides 2^{r-e} solutions.

(2) We can **precompute** the Gaussian elimination \rightarrow Cost of computing solutions: multiplication matrix-vector in $e \times c$ operations.

$$g = \frac{ec}{n_o} 2^{e-r}$$

Application to our attack example:

$$g = rac{39 imes 161}{410} 2^{-1} pprox 2^3$$

The time complexity is thus of $2^{70+3} = 2^{73}$

Conclusion

- Indeed, the smaller versions are hard to break
- \bullet Need for a dedicated analysis of small Keccak instances

Thanks to Léo Perrin and Jérémy Jean

Thank you for your attention, questions?

Conclusion

- Indeed, the smaller versions are hard to break
- \bullet Need for a dedicated analysis of small Keccak instances

Thanks to Léo Perrin and Jérémy Jean

Thank you for your attention, questions?