Structural exchange attack against 6-round AES-128

Rachelle Heim Boissier

UVSQ
Joint work with Henri Gilbert and Jean-René Reinhard (ANSSI)
14 April 2022

Key recovery attacks against block ciphers

General structure of an iterated block cipher:

Key recovery attacks against block ciphers

General structure of an iterated block cipher:

Key derivation attacks:

Key recovery attacks against block ciphers

General structure of 6-round AES:

Key derivation attacks against AES:

Our contribution

- Starting point: new 4-round exchange distinguisher by Rønjom, Bardeh and Helleseth [RBH17, BR19]
- Motivation: investigate key derivation attacks using this distinguisher
- Our contribution: mounting such an attack against 6-round AES-128

Structural exchange attack against AES:

Outline

(1) The 4-round exchange distinguisher [RBH17]
(2) Key recovery attack on 6-round AES

Super S-box representation of 2 rounds of AES

Super S-box representation of 4-round AES

Super S-box representation (2 rounds)

$$
R^{2}=A K \circ M C \circ S R \circ S \circ S R
$$

Super S-box representation of 4-round AES

Super S-box representation (2 rounds)

$$
R^{2}=A K \circ M C \circ S R \circ S \circ S R
$$

Super S-box representation (4 rounds)

$$
\begin{aligned}
R^{4} & =R^{2} \circ R^{2} \\
& =A K \circ M C \circ S R \circ S \circ \underbrace{S R \circ A K \circ M C \circ S R}_{\text {affine permutation } A} \circ S \circ S R \\
& =A K \circ M C \circ S R \circ S \circ A \circ S \circ S R
\end{aligned}
$$

4-round exchange property [RBH17]

If

Then

Exchange property

If $S \circ A \circ S(\alpha)$ and $S \circ A \circ S(\beta)$ are equal on a column, then this collision is preserved by any column exchange between α and β

4-round exchange property (proof)

If

Then

Since S operates independently on columns:

$$
S(\alpha) \oplus S(\beta)=S\left(\alpha^{\prime}\right) \oplus S\left(\beta^{\prime}\right)
$$

4-round exchange property (proof)

Since A is affine $(A(x)=\mathrm{L}(x)+C)$:

$$
A \circ S(\alpha) \oplus A \circ S(\beta)=A \circ S\left(\alpha^{\prime}\right) \oplus A \circ S\left(\beta^{\prime}\right)
$$

4-round exchange property (proof)

S preserves equality on columns

4-round exchange property [RBH17]

4-round exchange property [RBH17]

$$
R^{4}=\mathrm{AK} \circ \mathrm{MC} \circ \mathrm{SR} \circ \mathrm{~S} \circ \mathrm{~A} \circ \mathrm{~S} \circ \mathrm{SR}
$$

Outline

(1) The 4-round exchange distinguisher [RBH17]

(2) Key recovery attack on 6-round AES

Key recovery attack

General idea

Exchange diagonals Check if collisions of a pair on column(s) are preserved

Key recovery attack

General idea

Diagonal exchange after one round

Property

If $R(\alpha)$ and $R(\beta)$ are equal on three columns, then exchanging bytes of the remaining column is the same as exchanging diagonals.

Diagonal exchange after one round

Observation

For a good hypothesis on one of the diagonal of K_{0}, if α and β are equal on the three other diagonals, then one can compute up to 7 new plaintext pairs $\left\{\alpha^{\prime}, \beta^{\prime}\right\}$ which realise a diagonal exchange after one round

Key recovery attack

General idea

Exchange diagonals Check if collisions
of a pair on column(s) are preserved

Detecting collisions on a column

Observation

Knowing one column of K_{6}^{\prime} allows the detection of a collision on one byte per column.

Guessing (left) column of K_{6}^{\prime}

Probability that a collision on a byte is a collision on a column: $p=2^{-24}$

Detecting collisions on a column (filtering trick)

Observation

Knowing one column of K_{6}^{\prime} allows the detection of a collision on one byte per column.

Guessing (left) column of K_{6}^{\prime}

Probability that a collision on a byte is a collision on a column: $p=2^{-8}$

Key recovery attack

Do the following 2^{17} times:

1. Generate a structure of 2^{32} states that are all equal on 3 diagonals out of 4 , encrypt them
2. Find a pair of ciphertexts such that there is a collision on two columns
3. Guess a diagonal of K_{0}
4. Guess a column of K_{6}^{\prime}

Exchange diagonals Check if collisions
of a pair on column(s) are preserved

Improvement: guessing K_{6}^{\prime} with MITM

$$
0 \stackrel{?}{=} 0 E \cdot \delta_{0}+0 B \cdot \delta_{1}+0 D \cdot \delta_{2}+09 \cdot \delta_{3}
$$

Improvement: guessing K_{6}^{\prime} with MITM

$$
0 E \cdot \delta_{0}+0 B \cdot \delta_{1} \stackrel{?}{=} 0 D \cdot \delta_{2}+09 \cdot \delta_{3}
$$

Improvement: guessing K_{6}^{\prime} with MITM

$$
0 E \cdot \delta_{0}+0 B \cdot \delta_{1} \stackrel{?}{=} 0 D \cdot \delta_{2}+09 \cdot \delta_{3}
$$

For each pair, compute separately $0 E \cdot \delta_{0}+0 B \cdot \delta_{1}$ and $0 D \cdot \delta_{2}+09 \cdot \delta_{3}$ then look for collisions.
\rightarrow Testing all K_{6}^{\prime} : complexity of 2^{17} instead of 2^{32}

Our contribution (1/2)

Family	Ref.	Rounds	Data	Time	Memory
Integral	$[$ DKR97]	6	$2^{32} \mathrm{CP}$	$2^{72} \mathrm{E}$	2^{32}
	$[\mathrm{FKL}+00]$	6	$2^{32} \mathrm{CP}$	$2^{42} \mathrm{E}$	2^{32}
Exchange	$\left[\mathrm{BDK}^{+} 20\right]$	6	$2^{26} \mathrm{CP}$	$2^{80} \mathrm{E}$	2^{28}
	Our attack	6	$2^{50} \mathrm{CP}$	$2^{64} \mathrm{E}$	2^{32}
Impossible Diff.	[BLNS18]	7	$2^{105} \mathrm{CP}$	$2^{113} \mathrm{E}$	2^{74}
	$[$ LP21 $]$	7	$2^{105} \mathrm{CP}$	$2^{111} \mathrm{E}$	2^{72}
MITM	$[$ DFJ13 $]$	7	$2^{97} \mathrm{CP}$	$2^{99} \mathrm{E}$	2^{98}

Survey of existing key-recovery attacks against AES

Our contribution (2/2)

Distinguisher	Rounds	Data	Time	Memory
Multiple-of-8 [GRR17]	5	$2^{32} \mathrm{CP}$	$2^{35.6} \mathrm{XOR}$	2^{32}
Yoyo [RBH17]	5	$2^{26} \mathrm{ACC}$	$2^{25} \mathrm{XOR}$	small
Exchange [BR19]	5	$2^{30} \mathrm{CP}$	$2^{30} \mathrm{E}$	2^{37}
Yoyo [RBH17]	6	$2^{123} \mathrm{ACC}$	$2^{122} \mathrm{XOR}$	$/$
Exchange [BR19]	6	$2^{88.2} \mathrm{CP}$	$2^{88.2} \mathrm{E}$	$2^{88.2}$

Attack	Rounds	Data	Time	Memory
$\left[\mathrm{BDK}^{+} 20\right]$	6	$2^{26} \mathrm{CP}$	$2^{80} \mathrm{E}$	2^{28}
Our attack	6	$2^{50} \mathrm{CP}$	$2^{64} \mathrm{E}$	2^{32}

\rightarrow The 4-round exchange distinguisher can be converted into a key recovery attack of near-practical complexity

Thank you for your attention!

Questions?

