Structural exchange attack against 6-round AES-128

Rachelle Heim Boissier

UVSQ

Joint work with Henri Gilbert and Jean-René Reinhard (ANSSI)

14 April 2022

Key recovery attacks against block ciphers

General structure of an iterated block cipher:

Key recovery attacks against block ciphers

General structure of an iterated block cipher:

Key derivation attacks:

guess bits of K_0 guess bits of K_r $M \longrightarrow \bigoplus \mathbb{R} \longrightarrow (r-2)$ -round distinguisher $\longrightarrow \mathbb{R} \longrightarrow \bigoplus \mathbb{C}$

Key recovery attacks against block ciphers

General structure of 6-round AES:

Key derivation attacks against AES:

- Starting point: new 4-round exchange distinguisher by Rønjom, Bardeh and Helleseth [RBH17, BR19]
- Motivation: investigate key derivation attacks using this distinguisher
- Our contribution: mounting such an attack against 6-round AES-128

Structural exchange attack against AES:

1 The 4-round exchange distinguisher [RBH17]

2 Key recovery attack on 6-round AES

Super S-box representation of 2 rounds of AES

Super S-box representation of 4-round AES

Super S-box representation (2 rounds)

$$R^2 = AK \circ MC \circ SR \circ SR \circ SR$$

Super S-box representation of 4-round AES

Super S-box representation (2 rounds)

$$R^2 = AK \circ MC \circ SR \circ \frac{S}{S} \circ SR$$

Super S-box representation (4 rounds)

$$R^{4} = R^{2} \circ R^{2}$$

= $AK \circ MC \circ SR \circ S \circ \underbrace{SR \circ AK \circ MC \circ SR}_{\text{affine permutation } A} \circ S \circ SR$
= $AK \circ MC \circ SR \circ S \circ A \circ S \circ SR$

4-round exchange property [RBH17]

If $S \circ A \circ S(\alpha)$ and $S \circ A \circ S(\beta)$ are equal on a column, then this collision is preserved by any column exchange between α and β

Rachelle Heim

Structural exchange attack against 6-round AES-128

4-round exchange property (proof)

Since S operates independently on columns:

$$S(\alpha) \oplus S(\beta) = S(\alpha') \oplus S(\beta')$$

4-round exchange property (proof)

Since A is affine (A(x) = L(x)+C):

$$\mathsf{A} \circ \mathsf{S}(\alpha) \oplus \mathsf{A} \circ \mathsf{S}(\beta) = \mathsf{A} \circ \mathsf{S}(\alpha') \oplus \mathsf{A} \circ \mathsf{S}(\beta')$$

4-round exchange property (proof)

S preserves equality on columns

4-round exchange property [RBH17]

 $R^{4} = \mathsf{AK} \circ \mathsf{MC} \circ \mathsf{SR} \circ \boxed{\mathsf{S} \circ \mathsf{A} \circ \mathsf{S}} \circ \mathsf{SR}$

4-round exchange property [RBH17]

 $R^{4} = \mathsf{AK} \circ \mathsf{MC} \circ \mathsf{SR} \circ \boxed{\mathsf{S} \circ \mathsf{A} \circ \mathsf{S}} \circ \mathsf{SR}$

The 4-round exchange distinguisher [RBH17]

2 Key recovery attack on 6-round AES

Property

If $R(\alpha)$ and $R(\beta)$ are equal on three columns, then exchanging bytes of the remaining column is the same as exchanging diagonals.

Observation

For a good hypothesis on one of the diagonal of K_0 , if α and β are equal on the three other diagonals, then one can compute up to 7 new plaintext pairs $\{\alpha', \beta'\}$ which realise a diagonal exchange after one round

Observation

Knowing one column of K_6' allows the detection of a collision on one byte per column.

Probability that a collision on a byte is a collision on a column: $p = 2^{-24}$

Observation

Knowing one column of K_6' allows the detection of a collision on one byte per column.

Probability that a collision on a byte is a collision on a column: $p = 2^{-8}$

Do the following 2^{17} times:

1. Generate a structure of 2^{32} states that are all equal on 3 diagonals out of 4, encrypt them

2. Find a pair of ciphertexts such that there is a collision on two columns

Improvement: guessing K'_6 with MITM

$$0 \stackrel{?}{=} 0E \cdot \delta_0 + 0B \cdot \delta_1 + 0D \cdot \delta_2 + 09 \cdot \delta_3$$

Improvement: guessing K'_6 with MITM

$$0E \cdot \delta_0 + 0B \cdot \delta_1 \stackrel{?}{=} 0D \cdot \delta_2 + 09 \cdot \delta_3$$

Improvement: guessing K'_6 with MITM

$$0E \cdot \delta_0 + 0B \cdot \delta_1 \stackrel{?}{=} 0D \cdot \delta_2 + 09 \cdot \delta_3$$

For each pair, compute separately $0E \cdot \delta_0 + 0B \cdot \delta_1$ and $0D \cdot \delta_2 + 09 \cdot \delta_3$ then look for collisions.

$$\rightarrow$$
 Testing all K_6' : complexity of 2¹⁷ instead of 2³²

Family	Ref.	Rounds	Data	Time	Memory
Integral	[DKR97]	6	2 ³² CP	2 ⁷² E	2 ³²
	[FKL+00]	6	2 ³² CP	2 ⁴² E	2 ³²
Exchange	[BDK ⁺ 20]	6	2 ²⁶ CP	2 ⁸⁰ E	2 ²⁸
	Our attack	6	2 ⁵⁰ CP	2 ⁶⁴ E	2 ³²
Impossible Diff.	[BLNS18]	7	2 ¹⁰⁵ CP	2 ¹¹³ E	2 ⁷⁴
	[LP21]	7	2 ¹⁰⁵ CP	2 ¹¹¹ E	2 ⁷²
MITM	[DFJ13]	7	2 ⁹⁷ CP	2 ⁹⁹ E	2 ⁹⁸

Survey of existing key-recovery attacks against AES

Distinguisher	Rounds	Data	Time	Memory
Multiple-of-8 [GRR17]	5	2 ³² CP	2 ^{35.6} XOR	2 ³²
Yoyo [RBH17]	5	2 ²⁶ ACC	2 ²⁵ XOR	small
Exchange [BR19]	5	2 ³⁰ CP	2 ³⁰ E	2 ³⁷
Yoyo [RBH17]	6	2 ¹²³ ACC	2 ¹²² XOR	/
Exchange [BR19]	6	2 ^{88.2} CP	2 ^{88.2} E	2 ^{88.2}

Attack	Rounds	Data	Time	Memory
[BDK ⁺ 20]	6	2 ²⁶ CP	2 ⁸⁰ E	2 ²⁸
Our attack	6	2 ⁵⁰ CP	2 ⁶⁴ E	2 ³²

 \rightarrow The 4-round exchange distinguisher can be converted into a key recovery attack of near-practical complexity

Thank you for your attention!

Questions?