Generic attack on Duplex-Based AEAD Modes using Random Function Statistics

Henri Gilbert, Rachelle Heim Boissier, Louiza Khati, Yann Rotella

ANSSI, UVSQ

Eurocrypt 2023, Lyon, France

Introduction

A generic attack against duplex-based AEAD modes

- A forgery attack
 in most cases, the key is recovered as well
- Based on random function statistics
 Previous works: average behaviour (see for example [BGW18])
 Our work: average and exceptional behaviour

Our contribution

- Improving knowledge of the security of duplex-based modes
- Breaking a security claim of XOODYAK [DHPVAVK20]
 (XOODYAK still meets the security requirement of NIST's LWC competition)

Duplex-based AEAD modes

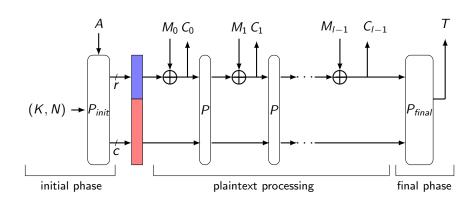
Authenticated Encryption with Associated Data

- Either **block-cipher based**: (tweakable) block cipher + mode
- Or permutation-based: public permutation + keyed mode
 Ex: XOODYAK = XOODOO[12] + Cyclist [DHPVAVK20]

Duplex-based modes of operation

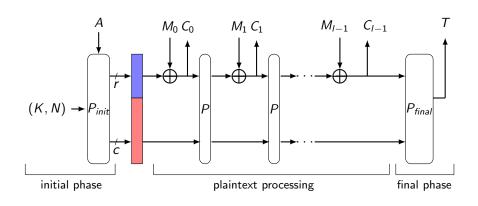
- Permutation-based modes introduced by Bertoni, Daemen, Peeters, Van Assche [BDPVA11]
- An adaptation to the AEAD context of the Sponge construction [BDPVA07]
 - Ex: SPONGEWRAP [BDPVA11], MonkeyWrap (KETJE) [BDPVAVK14], etc.

Duplex-based AEAD modes [BDPVA11]



- Permutation P operates on a state of length b = r + c bits, where r is the rate and c the capacity
- First *r* bits : the **outer state**
- Next c bits : the inner state

Duplex-based AEAD modes [BDPVA11]



• Permutation P operates on a state of length b = r + c bits, where r is the rate and c the capacity

Ex: XOODYAK

• First r bits : the outer state

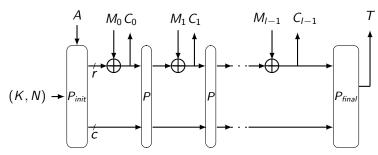
• Next c bits : the inner state

r = 192

c = 192

- Privacy and integrity are required in AEAD.
- It is assumed that: the adversary is nonce-respecting
 there is no release of unverified plaintext
- Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

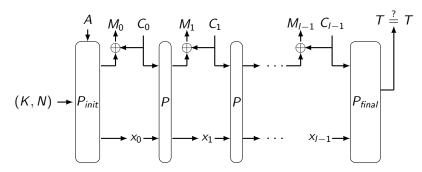
Encryption



- Privacy and integrity are required in AEAD.
- It is assumed that:

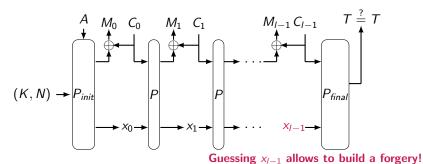
 the adversary is nonce-respecting
 there is no release of unverified plaintext
- Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

Decryption/verification



- Privacy and integrity are required in AEAD.
- It is assumed that: the adversary is nonce-respecting
 there is no release of unverified plaintext
- Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

Decryption/verification



- Privacy and integrity are required in AEAD.
- It is assumed that: the adversary is nonce-respecting
 there is no release of unverified plaintext
- Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds (the decryption oracles returns the plaintext)

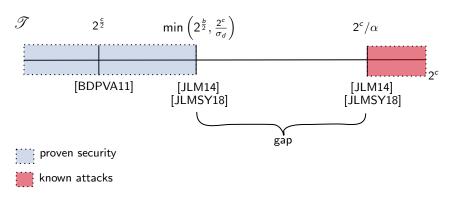
Total time complexity of an attack

$$\mathscr{T} = \sigma_e + \sigma_d + q_P + t_{extra-op}$$

where

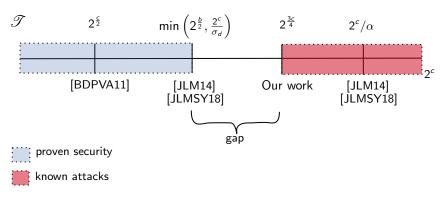
 σ_e is the number of online calls to P caused by encryption queries σ_d is the number of online calls to P caused by forgery attempts q_P is the number of offline queries to P or P^{-1}

Assuming a sufficiently large key/tag length:



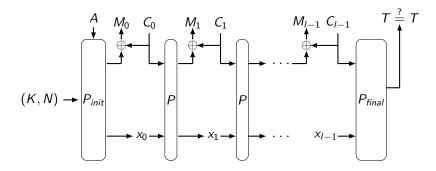
 σ_d is the number of online calls to P caused by forgery attempts α is a small constant

Assuming a sufficiently large key/tag length:

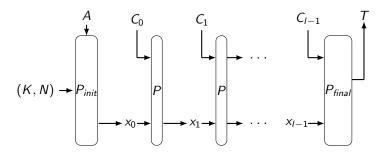


 σ_d is the number of online calls to P caused by forgery attempts α is a small constant

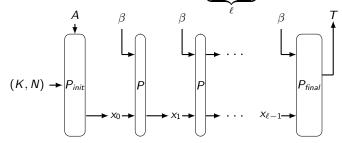
Decrypting the ciphertext/tag pair ($C = C_0 \mid\mid \cdots \mid\mid C_{l-1}; T$)



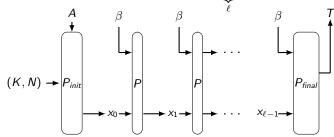
Decrypting the ciphertext/tag pair ($C = C_0 \mid\mid \cdots \mid\mid C_{l-1}; T$)



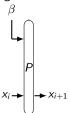
Decrypting the long ciphertext/tag pair ($\beta_\ell = \underbrace{\beta||\cdots||\beta}; T$)



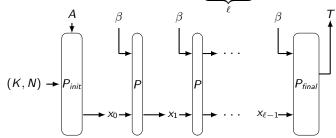
Decrypting the long ciphertext/tag pair ($\beta_\ell = \underbrace{\beta||\cdots||\beta};T)$



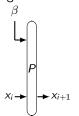
The tag verification iterates the function $F_{eta}: \mathbb{F}_2^c o \mathbb{F}_2^c$



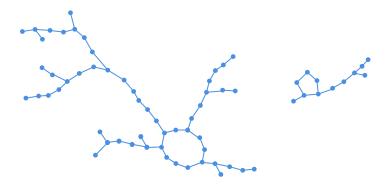
Decrypting the long ciphertext/tag pair $(\beta_{\ell} = \underline{\beta||\cdots||\beta;T})$

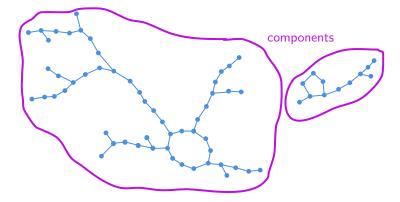


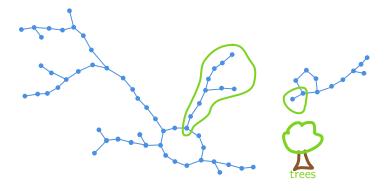
The tag verification iterates the function $F_{eta}: \mathbb{F}_2^c o \mathbb{F}_2^c$

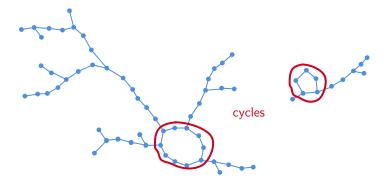


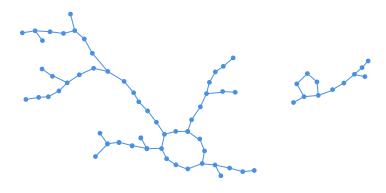
- For a random β , we expect F_{β} to behave as a random function drawn in \mathfrak{F}_{2^c} .
- For each nonce, we expect x_0 to behave as a random point drawn in the graph of F_{β} .









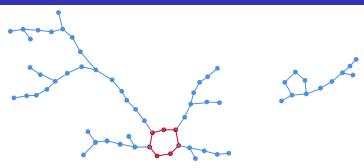


Average...

• Size of the largest component: $2^c \times 0.76$.

• Cycle/tail length of a random point: $2^{\frac{c}{2}}\sqrt{\pi/8}$

[FO89]

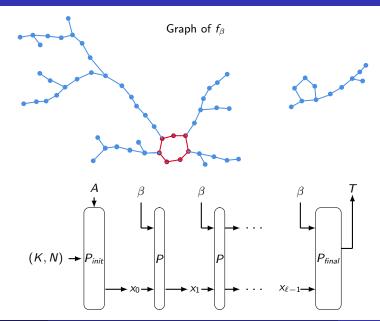


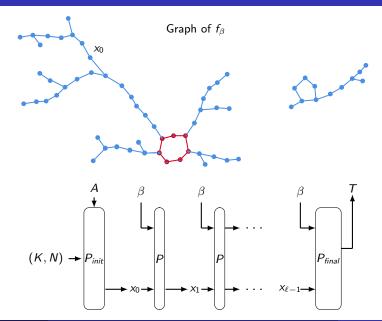
The probability that a random function has a component

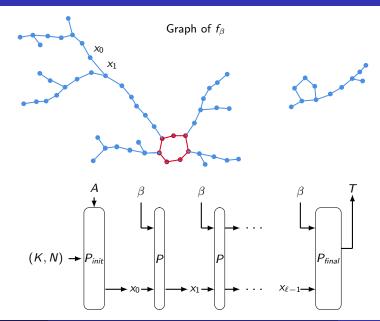
- of cycle length at most $\leq 2^{\frac{c}{2}-\nu} \rightarrow$ its cycle is **exceptionally small**:
- of size at least $\geq 2^c \times s \rightarrow$ this component is **reasonably large**;

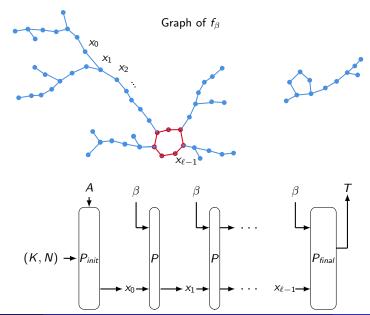
$$p_{s,\nu} pprox \sqrt{rac{2(1-s)}{\pi s}} 2^{-
u}$$
 [DeLaurentis87]

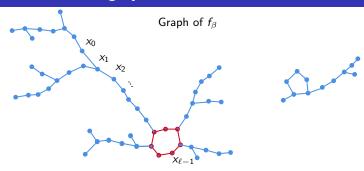
Ex: proba for s=65% and $\nu=\frac{c}{4}$ (cycle of length $\leq 2^{\frac{c}{4}}$): $0.6\times 2^{-\frac{c}{4}}$



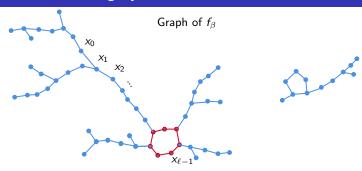






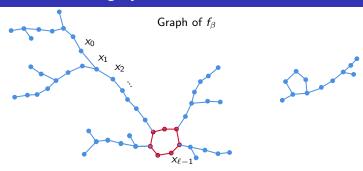


If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...



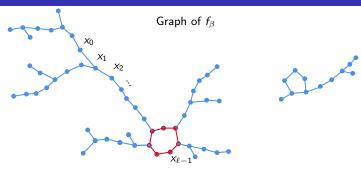
If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x_0 belongs to it with good probability (≈ 0.65)



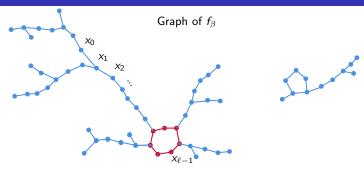
If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

- \rightarrow Since the component is large, x_0 belongs to it with good probability (≈ 0.65)
- \to If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability



If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

- ightarrow Since the component is large, x_0 belongs to it with good probability (pprox 0.65)
- o If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability
- \rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ i.e. at most $2^{\frac{c}{4}}$ possible tags



If one finds β s.t. F_{β} has a reasonably large component (say $\geq 0.65 \times 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

- ightarrow Since the component is large, x_0 belongs to it with good probability (pprox 0.65)
- o If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability
- \rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ i.e. at most $2^{\frac{c}{4}}$ possible tags

Resulting forgery attack: try the $\leq 2^{\frac{c}{4}}$ possible values for T.

Precomputation phase

Frecomputation phase Find β s.t. F_{β} has a large component $(\geq 0.65 \times 2^c)$ with an exceptionnally small cycle $(\leq 2^{\frac{c}{4}})$, recover this cycle independent

Online phase

Submit (N, A, C = $\underline{\beta||\cdots||\beta}$, T) queries to the decryption oracle where:

- N is randomly sampled
- A is set to the empty string
- ℓ is 'big enough' ($\approx 2^{\frac{c}{2}}$)

• $T = P_{final}(\beta || x)$, for x in the small cycle

Simplified complexity analysis (precomputation phase)

Precomputation phase: Find β s.t. F_{β} has a large component $(\geq 0.65 \times 2^c)$ with an exceptionnally small cycle $(\leq 2^{\frac{c}{4}})$, recover this cycle

Complexity analysis:

- Drawing about $1/p_{s,\nu} \approx 2^{\frac{c}{4}}$ random β 's
- For each β , investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of P.

Simplified complexity analysis (precomputation phase)

Precomputation phase: Find β s.t. F_{β} has a large component $(\geq 0.65 \times 2^c)$ with an exceptionnally small cycle $(\leq 2^{\frac{c}{4}})$, recover this cycle

Complexity analysis:

- Drawing about $1/p_{s,\nu} \approx 2^{\frac{c}{4}}$ random β 's
- For each β , investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of P.

Note: the algorithm includes a test that the component is likely to be large enough.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta||\cdots||\beta}_{\ell}, T)$ queries to the decryption oracle where $T = P_{final}(\beta||x)$, x in the cycle.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta||\cdots||\beta}_{\ell}, T)$ queries to the decryption oracle where $T = P_{final}(\beta||x)$, x in the cycle.

Complexity analysis:

- x_0 belongs to the desired component with probability s = 65%
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell=3\times 2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of P.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta||\cdots||\beta}_{\ell}, T)$ queries to the decryption oracle where $T = P_{final}(\beta||x)$, x in the cycle.

Complexity analysis:

- x_0 belongs to the desired component with probability s = 65%
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell=3\times2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of P.

Note: At the cost of a more expensive prec. phase, the complexity of this step can be brought close(r) to $2^{\frac{c}{2}}$.

Small scale experiments

- Our attack is somewhat heuristic based.
- \rightarrow Ex: corroborate that the F_{β} behave as random functions in practice.
 - We implemented experiments with X00D00[12] as P.
 - All our practical results match our heuristic-based results.
- ightarrow Ex: the average tail length for a random F_{eta} matches the average tail length for a random permutation.
 - We also implemented the **precomputation algorithm**.
- \rightarrow We found some valid β values for c up to 40.

Summary of our results

Our attack

- has total time complexity $\leq 21 \times 2^{\frac{3c}{4}}$;
- a probability of success $\geq 95\%$;
- can be transformed into a key recovery at a negligible extra cost if P_{init} is reversible (how: using the plaintext);
- is applicable to the modes of Norx v2, KETJE, KNOT and KEYAK
- breaks the 184-bit security claim made by the designers of XOODYAK with an attack of complexity 2¹⁴⁸.

Preventing the attack

Two main features frustrate our cryptanalysis:

- Key-dependent final phase. (ASCON, NORX v3)
- ightarrow a correct guess on $x_{\ell-1}$ cannot be transformed into a forgery
 - No outer state overwriting. (Beetle, SPARKLE, Subterranean)
- ightarrow the decryption of $\underbrace{eta||\cdots||eta|}_{\ell}$ does not correspond to the iteration of a function

Thank you for your attention :)

Any questions?