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Introduction

This talk is about:

Symmetric cryptanalysis

Using random function graphs statistics in generic attacks ...

... against a variety of iterated constructions:

Hash functions [Floyd]
Message authenticated codes (MAC) modes [LPW13]
Authenticated encryption (AE) modes [GHKR23]
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Plan

1 Random function statistics

2 Memory-negligible collision search

3 State recovery attack against HMAC

4 Generic attack against AEAD modes
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Random functions

Definition:

FN is the set of functions which map a finite set of size N ∈ N∗ to itself.

Our main focus: the graph of f (randomly drawn) in FN

Functional graph

The graph of f , denoted by G (f ), is a directed graph such that a vertex
goes from node i to node j if and only if f (i) = j .
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Functional graphs : an example

Functional graph

The graph of f , denoted by G (f ), is a directed graph such that a vertex
goes from node i to node j if and only if f (i) = j .

f : F3
2 −→ F3

2

0 7−→ 2
1 7−→ 1
2 7−→ 3
3 7−→ 5
4 7−→ 2
5 7−→ 7
6 7−→ 1
7 7−→ 3

2 3
0 5

7
4

6
1
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Functional graphs : important definitions (1)

The graph of f can be seen as a set of
connected components.

Each connected component has a unique
cycle.

Each cyclic node is the root of a tree.
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Functional graphs : important definitions (2)

For any x0 ∈ G (f )

(xi := f i (x0))i∈N

is eventually periodic.

(xi )i∈N graphically corresponds to a path
linked to a cycle

We define

Tail length.

λ(x0) is the smallest i s.t. xi is in the cycle.

Cycle length.

µ(x0) number of nodes in the cycle.

x0
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Random function graphs : important statistics

For f randomly drawn in FN :

Expected size of f ’s largest component : 0.76N

Expected size of f ’s largest tree : 0.5N

For x a random node:

Expected value of its tail length λ(x) :
√
πN/8

Expected value of its cycle length µ(x) :
√
πN/8

Many more statistics are known and used in generic attacks.
[DeLaurentis88] [FO89] [Harris60] . . .
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Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F∗
2 → Fn

2

such that the following properties are verified

Preimage resistance. Given h ∈ Fd
2 , it is difficult to find m ∈ F∗

2 s.t.
H(m) = h.

Second preimage resistance. Given m ∈ F∗
2, it is difficult to find

m′ ̸= m s.t. H(m′) = H(m).

Collision resistance. It is difficult to find (m,m′), m ̸= m′ such that
H(m) = H(m′).

Generic collision attack: Compute H(m) for O(2n/2) messages m, store
them in a list, sort it. WHP, you find a collision (Birthday paradox).

Problem: Memory complexity is high.

Solution: a generic memory-negligible collision attack using
functional graphs.
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A memory-negligible collision attack on H

Let f ∈ F2n be defined as

f : Fn
2 −→ Fn

2

x 7−→ H(x)

Step 1. Floyd’s cycle finding algorithm allows to recover a node xc in a
cycle of f ’s graph

in time O(2n/2);

using a negligible amount of memory.

Step 2. Using xc , it is easy to

recover the cycle’s length µ

find a collision on f , and thus on H,

in time O(2n/2) and with negligible memory.
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Floyd’s cycle finding algorithm

parameters : f ∈ F2n

1: x0 ←R Fn
2

2: turtle, hare ← x0, x0
3: for i = 1 to 2n − 1 do
4: turtle ← f (turtle)
5: hare ← f 2(hare)
6: if turtle = hare then
7: return turtle
8: end if
9: end for

x0

f
f 2
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Floyd’s cycle finding algorithm

λ is the smallest integer j such that
xj = f j(x0) is in the cycle.

Let dλ = dist(xλ, x2λ).

ThenThus, after at most µ tries, the
algorithm finds i such that xi = x2i , and
xi is in the cycle.

x0

f
f 2
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λ is the smallest integer j such that
xj = f j(x0) is in the cycle.

Let dλ = dist(xλ, x2λ).

Then

dist(f (xλ), f
2(x2λ)) = dλ + 1 mod µ .
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Floyd’s cycle finding algorithm

λ is the smallest integer j such that
xj = f j(x0) is in the cycle.

Let dλ = dist(xλ, x2λ).

Then

dist(xλ+k , x2λ+2k) = dλ + k mod µ .

Thus, after at most µ tries, the
algorithm finds i such that xi = x2i , and
xi is in the cycle.

x0

f
f 2

xλ
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f
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Floyd’s cycle finding algorithm

We need

at most λ for loops to reach the
cycle

at most µ for loops to detect it

Functional graphs statistics.
f behaves like a RF, x0 is randomly
drawn. We thus expect

λ = O(2n/2)

µ = O(2n/2)

parameters : f ∈ F2n

1: x0 ←R Fn
2

2: turtle, hare ← x0, x0
3: for i = 1 to 2n − 1 do
4: turtle ← f (turtle)
5: hare ← f 2(hare)
6: if turtle = hare then
7: return turtle
8: end if
9: end for

One can show that Floyd’s time complexity is in O(2n/2)

. . . and it is straightforward that the memory complexity is negligible.
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Message Authenticated Code (MAC) algorithms

Definition. A Message Authenticated Code algorithm is a symmetric
algorithm that takes as input a secret key k and an arbitrary length message m
to produce a fixed length tag that guarantees the integrity of the message.

Generation and verification procedure. Alice and Bob share a secret k .

1 Alice (sender)

Using the secret and a MAC algorithm MAC , Alice computes a tag
T = MACk(M).
Alice sends (M,T ) through an unsafe communication channel.

2 Bob (receiver)

Bob receives (M ′,T ′).
Bob computes MACk(M

′). If it is equal to T ′, then he concludes that
M ′ is the message sent by Alice. Otherwise, he discards (M ′,T ′).
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Hash-based MACs

Hash functions can be used to build MACs.

A good hash function behaves like a random oracle.

It is easy to build a secure MAC with a RO.

With a real hash function, it is essential to study generic attacks.

There is a great number of papers which analyse the generic security of
HMACs.

In this presentation. We present a 2013 state recovery attack by Leurent,
Peyrin and Wang on the family of hash-based MACs with the following structure
(e.g. HMAC [BCK96]).

h

M1

h h

n

n
h

. . .
Ik

gk

|M|

MACk(M)

M2 M3 Ml−1
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State-recovery attack on HMAC [LPW13]

h

M1

h h

n

n
h

. . .
Ik

gk

|M|

MACk(M)

M2 M3 Ml−1

Let β be a random fixed block, and consider the message M = β|| · · · ||β︸ ︷︷ ︸
ℓ

.

We expect

fβ : Fn
2 −→ Fn

2

x 7−→ h(β||x)

to behave as a random function.

Since the main component has size 0.76 · 2n, x0 = Ik is in it WHP.
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Idea 1: use two messages which reach the same state

h

β

h h

n

n
h

. . .
Ik

gk

|M|

MACk(M)

β β β

x0 x0

x2n/2x2n/2

Two issues: Message size + the state is not recovered
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M = [β]2
n/2

M = [β]2
n/2+µ



Idea 2: reach the cycle twice

x0 x0 x0

M1 = [β]2
n/2+µ||[1]||[β]2n/2

M2 = [β]2
n/2 ||[1]||[β]2n/2+µ

reach the same state with constant probability.

Still no state recovery.
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M = [β]2
n/2

M = [β]2
n/2

||[1] M = [β]2
n/2

||[1]||[β]2
n/2



Idea 2: reach the cycle twice

x0 x0 x0

α α α

M1 = [β]2
n/2+µ||[1]||[β]2n/2

M2 = [β]2
n/2 ||[1]||[β]2n/2+µ

reach the same state with constant probability.

Still no state recovery. Solution: use the root of the main tree α.
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M = [β]2
n/2

M = [β]2
n/2

||[1] M = [β]2
n/2

||[1]||[β]2
n/2



Idea 3: use the root of the giant tree

Offline Step.
Find the cycle length µ of the main component of fβ and the root of
the main tree α.
Cost: O(2n/2) applications of h.

Online Step.
Find the smallest z that yields a collision between

MAC ([β]z ||[1]||[β]2n/2+µ)

MAC ([β]z+µ||[1]||[β]2n/2).
using binary search.
Cost: O(2n/2 · n) applications of h.

WCP, the state after [β]z is α.
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Authenticated Encryption

with Associated Data (AEAD)

Alice Bob
Unsafe channel

A cryptographic scheme providing Authenticated Encryption ensures
both the privacy and integrity of communications.

Privacy: The message can only be read by Alice and Bob.

Integrity: If the message is modified in the unsafe communication channel,
Bob will know.

Associated data : Public data sent alongside the message and whose integrity is
also guaranteed.
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Authenticated Encryption with Associated Data (AEAD)

Alice Bob
K , N, M, A K
(C ,T ) = Enc(K ,N,M,A)

return M = Dec(K ,N,C ,A)

Forgery attack: find a decryption query (N,A,C ,T ) s.t. the tag
verification succeeds.
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Authenticated Encryption with Associated Data (AEAD)

Alice Bob
K , N, M, A K
(C ,T ) = Enc(K ,N,M,A)

(N,A,C ,T )

if Verif (K ,N,A,C ,T )

return M = Dec(K ,N,C ,A)

Forgery attack: find a decryption query (N,A,C ,T ) s.t. the tag
verification succeeds.

It is assumed that:
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- the adversary is nonce-respecting
- there is no release of unverified plaintext



Duplex-based AEAD modes

Authenticated Encryption with Associated Data

Either block-cipher based: (tweakable) block cipher + mode

Or permutation-based: public permutation + keyed mode
Ex: Xoodyak = Xoodoo[12] + Cyclist [DHPVAVK20]

Duplex-based modes of operation

Permutation-based modes introduced by Bertoni, Daemen, Peeters, Van
Assche [BDPVA11]

An adaptation to the AEAD context of the Sponge construction
[BDPVA07]

Ex: SpongeWrap [BDPVA11], MonkeyWrap (Ketje) [BDPVAVK14], etc.
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Duplex-based AEAD modes [BDPVA11]

initial phase

(K ,N)

A

Finit

r

c

plaintext processing

P

⊕
M0C0

P

⊕
M1C1

. . .

. . .

final phase

Ffinal

⊕
Ml−1 Cl−1 T

Permutation P operates on a state of length b = r + c bits, where r is the
rate and c the capacity. (Think of c as n!)

First r bits : the outer state

Next c bits : the inner state
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Ex: Xoodyak
r = 192
c = 192



Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N,A,C ,T ) s.t. the tag verification

succeeds

Encryption

(K ,N)

A

Finit

r

c

P

⊕
M0C0

P

⊕
M1C1

. . .

. . .

Ffinal

⊕
Ml−1 Cl−1 T
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Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N,A,C ,T ) s.t. the tag verification

succeeds

Decryption/verification

(K ,N)

A

Finit

⊕
M0 C0

x0

P

⊕
M1 C1

x1

P

. . .

. . .

⊕
Ml−1 Cl−1

xl−1

Ffinal

T
?
= T
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Guessing xl−1 allows to build a forgery!



Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N,A,C ,T ) s.t. the tag verification

succeeds

Total time complexity of an attack

T = σe + σd + qP + textra−op

where

σe is the number of online calls to P caused by encryption queries

σd is the number of online calls to P caused by forgery attempts

qP is the number of offline queries to P or P−1
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Our motivation
Disclaimer

this is (extremely) simplified

Assuming a sufficiently large key/tag length:

2c

2
c
2 min

(
2

b
2 , 2c

σd

) 2c/α

gap

[BDPVA11] [JLM14]

proven security

known attacks

T

[JLM14]
[JLMSY18] [JLMSY18]
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Main observation

Decrypting the ciphertext/tag pair (C = C0 || · · · ||Cl−1;T )

(K ,N)

A

Finit

⊕
M0 C0

x0

P

⊕
M1 C1

x1

P

. . .

. . .

⊕

Ml−1 Cl−1

xl−1

Ffinal

T
?
= T
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Main observation

Decrypting the long ciphertext/tag pair (βℓ = β|| · · · ||β︸ ︷︷ ︸
ℓ

;T )

(K ,N)

A

Finit

β

x0

P

β

x1

P

. . .

. . .

β

xℓ−1

Ffinal

T

The tag verification iterates the function fβ : Fc
2 → Fc

2
β

xi

P

xi+1

For a random β, we expect fβ to behave as a
random function drawn in F2c .

For each nonce, we expect x0 to behave as a
random point drawn in the graph of fβ .
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Reminder: graph of a random function f in F2c

components

Average. . .

Size of the largest component: 2c × 0.76.

Cycle/tail length of a random point: 2
c
2

√
π/8
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Reminder: graph of a random function f in F2c

components

The probability that a random function has a component

of cycle length at most ≤ 2
c
2−ν → its cycle is exceptionally small:

of size at least ≥ 2c × s → this component is reasonably large;

ps,ν ≈
√

2(1− s)

πs
2−ν

Ex: proba for s = 65% and ν = c
4
(cycle of length ≤ 2

c
4 ): 0.6× 2−

c
4
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[DeLaurentis87]



Core idea of our forgery attack

Graph of Fβ
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Core idea of our forgery attack

Graph of Fβ

x0
x1

x2

xℓ−1

...

If one finds β s.t. fβ has a reasonably large component (say ≥ 0.65× 2c) with
an exceptionnally small cycle (say ≤ 2

c
4 ). . .

→ Since the component is large, x0 belongs to it with good probability (≈ 0.65)

→ If so, if ℓ is ‘large enough’ (say ℓ ≈ 2
c
2 ), xℓ−1 is in the cycle with good probability

→ If so, there are at most 2
c
4 possible values for xℓ−1 i.e. at most 2

c
4 possible tags

Resulting forgery attack: try the ≤ 2
c
4 possible values for T .
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Core idea of our forgery attack

Precomputation phase
Find β s.t. fβ has a large component (≥ 0.65× 2c) with an
exceptionnally small cycle (≤ 2

c
4 ), recover this cycle.

Online phase
Submit (N,A,C = β|| · · · ||β︸ ︷︷ ︸

ℓ

,T ) queries to the decryption oracle where:

N is randomly sampled

A is set to the empty string

ℓ is ‘big enough’ (≈ 2
c
2 )

T = Pfinal(β|| x ), for x in the small cycle

Generic attacks based on functional graphs 34 / 40
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key

independant



Simplified complexity analysis (precomputation phase)

Precomputation phase: Find β s.t. fβ has a large component
(≥ 0.65× 2c) with an exceptionnally small cycle (≤ 2

c
4 ), recover this

cycle.

Complexity analysis:

Drawing about 1/ps,ν ≈ 2
c
4 random β’s

For each β, investigating Fβ costs ≈ 2
c
2 per β thanks to Floyd’s

algorithm.

The total complexity is ≈ 2
3c
4 applications of P.

Note: the algorithm includes a test that the component is likely to be
large enough.
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Simplified complexity analysis (online phase)

Online phase. Submit (N,A,C = β|| · · · ||β︸ ︷︷ ︸
ℓ

,T ) queries to the decryption

oracle where T = Ffinal (β||x), x in the cycle.

Complexity analysis:

x0 belongs to the desired component with probability s = 65%

For xℓ−1 to belong to the cycle with good probability, we set
ℓ = 3× 2

c
2

We try at most 2
c
4 values for T (at most the length of the cycle).

The total complexity is ≈ 2
3c
4 applications of P.

Note: At the cost of a more expensive prec. phase, the complexity of this
step can be brought close(r) to 2

c
2 .
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Small scale experiments

Our attack is somewhat heuristic based.

→ Ex: corroborate that the fβ behave as random functions in practice.

We implemented experiments with Xoodoo[12] as P.

All our practical results match our heuristic-based results.

→ Ex: the average tail length for a random fβ matches the average tail length for

a random permutation.

We also implemented the precomputation algorithm.

→ We found some valid β values for c up to 40.
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Summary of our results

Our attack

has total time complexity ≤ 21× 2
3c
4 ;

a probability of success ≥ 95%;

can be transformed into a key recovery at a negligible extra cost if Pinit is

reversible (how: using the plaintext);

is applicable to the modes of Norx v2, Ketje, KNOT and Keyak;

breaks the 184-bit security claim made by the designers of Xoodyak with

an attack of complexity 2148;

̸= attack on HMAC that has complexity ≈ 2n/2: for a given C , we cannot ask

an oracle to provide a valid T .
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Preventing the attack

Two main features frustrate our cryptanalysis:

Key-dependent final phase. (ASCON, NORX v3)

→ a correct guess on xℓ−1 cannot be transformed into a forgery (still a state

recovery)

No outer state overwriting. (Beetle, SPARKLE)

→ the decryption of β|| · · · ||β︸ ︷︷ ︸
ℓ

does not correspond to the iteration of a function
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Thank you for your attention :)

Any questions?
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