Generic attacks based on functional graphs

Rachelle Heim Boissier

Université de Versailles Saint-Quentin-en-Yvelines
Séminaire de Cryptographie de Rennes

Introduction

This talk is about:

- Symmetric cryptanalysis
- Using random function graphs statistics in generic attacks ...
- ... against a variety of iterated constructions:
- Hash functions [Floyd]
- Message authenticated codes (MAC) modes [LPW13]
- Authenticated encryption (AE) modes [GHKR23]

Plan

(1) Random function statistics

(2) Memory-negligible collision search

(3) State recovery attack against HMAC

(4) Generic attack against AEAD modes

Random functions

Definition:

\mathscr{F}_{N} is the set of functions which map a finite set of size $N \in \mathbb{N}^{*}$ to itself.

Our main focus: the graph of f (randomly drawn) in \mathscr{F}_{N}

Functional graph

The graph of f, denoted by $G(f)$, is a directed graph such that a vertex goes from node i to node j if and only if $f(i)=j$.

Functional graphs : an example

Functional graph

The graph of f, denoted by $G(f)$, is a directed graph such that a vertex goes from node i to node j if and only if $f(i)=j$.
$f: \mathbb{F}_{2}^{3} \longrightarrow \mathbb{F}_{2}^{3}$

$$
\begin{cases}0 & \longmapsto 2 \\ 1 & \longmapsto 1 \\ 2 & \longmapsto 3 \\ 3 & \longmapsto 5 \\ 4 & \longmapsto 2 \\ 5 & \longmapsto 7 \\ 6 & \longmapsto 1 \\ 7 & \longmapsto 3\end{cases}
$$

$$
0 \rightarrow \underbrace{2}_{2}
$$

Functional graphs : important definitions (1)

- The graph of f can be seen as a set of connected components.

Functional graphs : important definitions (1)

- The graph of f can be seen as a set of connected components.
- Each connected component has a unique cycle.

Functional graphs : important definitions (1)

- The graph of f can be seen as a set of connected components.
- Each connected component has a unique cycle.
- Each cyclic node is the root of a tree.

Functional graphs : important definitions (2)

For any $x_{0} \in G(f)$

Functional graphs : important definitions (2)

For any $x_{0} \in G(f)$

- $\left(x_{i}:=f^{i}\left(x_{0}\right)\right)_{i \in \mathbb{N}}$

Functional graphs : important definitions (2)

For any $x_{0} \in G(f)$

- $\left(x_{i}:=f^{i}\left(x_{0}\right)\right)_{i \in \mathbb{N}}$ is eventually periodic.
- $\left(x_{i}\right)_{i \in \mathbb{N}}$ graphically corresponds to a path linked to a cycle

Functional graphs : important definitions (2)

For any $x_{0} \in G(f)$

- $\left(x_{i}:=f^{i}\left(x_{0}\right)\right)_{i \in \mathbb{N}}$ is eventually periodic.
- $\left(x_{i}\right)_{i \in \mathbb{N}}$ graphically corresponds to a path linked to a cycle

We define

- Tail length. $\lambda\left(x_{0}\right)$ is the smallest i s.t. x_{i} is in the cycle.
- Cycle length. $\mu\left(x_{0}\right)$ number of nodes in the cycle.

Random function graphs : important statistics

For f randomly drawn in \mathfrak{F}_{N} :

- Expected size of f 's largest component: 0.76 N
- Expected size of f 's largest tree : 0.5 N
- For x a random node:
- Expected value of its tail length $\lambda(x): \sqrt{\pi N / 8}$
- Expected value of its cycle length $\mu(x): \sqrt{\pi N / 8}$

Random function graphs : important statistics

For f randomly drawn in \mathfrak{F}_{N} :

- Expected size of f 's largest component : 0.76 N
- Expected size of f 's largest tree : 0.5 N
- For x a random node:
- Expected value of its tail length $\lambda(x): \sqrt{\pi N / 8}$
- Expected value of its cycle length $\mu(x): \sqrt{\pi N / 8}$

Many more statistics are known and used in generic attacks.
[DeLaurentis88] [FO89] [Harris60] ...

Plan

(1) Random function statistics

(2) Memory-negligible collision search

(3) State recovery attack against HMAC

(4) Generic attack against AEAD modes

Cryptographic hash functions

Definition. A cryptographic hash function is a function $H: \mathbb{F}_{2}^{*} \rightarrow \mathbb{F}_{2}^{n}$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_{2}^{d}$, it is difficult to find $m \in \mathbb{F}_{2}^{*}$ s.t. $H(m)=h$.
- Second preimage resistance. Given $m \in \mathbb{F}_{2}^{*}$, it is difficult to find $m^{\prime} \neq m$ s.t. $H\left(m^{\prime}\right)=H(m)$.
- Collision resistance. It is difficult to find $\left(m, m^{\prime}\right), m \neq m^{\prime}$ such that $H(m)=H\left(m^{\prime}\right)$.

Cryptographic hash functions

Definition. A cryptographic hash function is a function $H: \mathbb{F}_{2}^{*} \rightarrow \mathbb{F}_{2}^{n}$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_{2}^{d}$, it is difficult to find $m \in \mathbb{F}_{2}^{*}$ s.t. $H(m)=h$.
- Second preimage resistance. Given $m \in \mathbb{F}_{2}^{*}$, it is difficult to find $m^{\prime} \neq m$ s.t. $H\left(m^{\prime}\right)=H(m)$.
- Collision resistance. It is difficult to find $\left(m, m^{\prime}\right), m \neq m^{\prime}$ such that $H(m)=H\left(m^{\prime}\right)$.

Generic collision attack: Compute $H(m)$ for $O\left(2^{n / 2}\right)$ messages m, store them in a list, sort it. WHP, you find a collision (Birthday paradox).

Cryptographic hash functions

Definition. A cryptographic hash function is a function $H: \mathbb{F}_{2}^{*} \rightarrow \mathbb{F}_{2}^{n}$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_{2}^{d}$, it is difficult to find $m \in \mathbb{F}_{2}^{*}$ s.t. $H(m)=h$.
- Second preimage resistance. Given $m \in \mathbb{F}_{2}^{*}$, it is difficult to find $m^{\prime} \neq m$ s.t. $H\left(m^{\prime}\right)=H(m)$.
- Collision resistance. It is difficult to find $\left(m, m^{\prime}\right), m \neq m^{\prime}$ such that $H(m)=H\left(m^{\prime}\right)$.

Generic collision attack: Compute $H(m)$ for $O\left(2^{n / 2}\right)$ messages m, store them in a list, sort it. WHP, you find a collision (Birthday paradox).

Problem: Memory complexity is high.

Cryptographic hash functions

Definition. A cryptographic hash function is a function $H: \mathbb{F}_{2}^{*} \rightarrow \mathbb{F}_{2}^{n}$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_{2}^{d}$, it is difficult to find $m \in \mathbb{F}_{2}^{*}$ s.t. $H(m)=h$.
- Second preimage resistance. Given $m \in \mathbb{F}_{2}^{*}$, it is difficult to find $m^{\prime} \neq m$ s.t. $H\left(m^{\prime}\right)=H(m)$.
- Collision resistance. It is difficult to find $\left(m, m^{\prime}\right), m \neq m^{\prime}$ such that $H(m)=H\left(m^{\prime}\right)$.

Generic collision attack: Compute $H(m)$ for $O\left(2^{n / 2}\right)$ messages m, store them in a list, sort it. WHP, you find a collision (Birthday paradox).

Problem: Memory complexity is high.
Solution: a generic memory-negligible collision attack using functional graphs.

A memory-negligible collision attack on H

Let $f \in \mathfrak{F}_{2^{n}}$ be defined as

$$
\begin{aligned}
f: \mathbb{F}_{2}^{n} & \longrightarrow \mathbb{F}_{2}^{n} \\
x & \longmapsto H(x)
\end{aligned}
$$

Step 1. Floyd's cycle finding algorithm allows to recover a node x_{c} in a cycle of f 's graph

- in time $O\left(2^{n / 2}\right)$;
- using a negligible amount of memory.

Step 2. Using x_{c}, it is easy to

- recover the cycle's length μ
- find a collision on f, and thus on H, in time $O\left(2^{n / 2}\right)$ and with negligible memory.

Floyd's cycle finding algorithm


```
    1: }\mp@subsup{x}{0}{}\mp@subsup{\leftarrow}{R}{}\mp@subsup{\mathbb{F}}{2}{n
    2: turtle, hare }\leftarrow\mp@subsup{x}{0}{},\mp@subsup{x}{0}{
    3: for i=1 to 2n}-1\mathrm{ do
    4: turtle \leftarrowf(turtle)
    5: hare }\leftarrow\mp@subsup{f}{}{2}\mathrm{ (hare)
    6: if turtle = hare then
    7: return turtle
    8: end if
    9: end for
```


Floyd's cycle finding algorithm

λ is the smallest integer j such that $x_{j}=f^{j}\left(x_{0}\right)$ is in the cycle.

Floyd's cycle finding algorithm

λ is the smallest integer j such that $x_{j}=f^{j}\left(x_{0}\right)$ is in the cycle.

Floyd's cycle finding algorithm

λ is the smallest integer j such that $x_{j}=f^{j}\left(x_{0}\right)$ is in the cycle.
Let $d_{\lambda}=\operatorname{dist}\left(x_{\lambda}, x_{2 \lambda}\right)$.

Floyd's cycle finding algorithm

λ is the smallest integer j such that $x_{j}=f^{j}\left(x_{0}\right)$ is in the cycle.
Let $d_{\lambda}=\operatorname{dist}\left(x_{\lambda}, x_{2 \lambda}\right)$.
Then
$\operatorname{dist}\left(f\left(x_{\lambda}\right), f^{2}\left(x_{2 \lambda}\right)\right)=d_{\lambda}+1 \quad \bmod \mu$.

Floyd's cycle finding algorithm

λ is the smallest integer j such that $x_{j}=f^{j}\left(x_{0}\right)$ is in the cycle.
Let $d_{\lambda}=\operatorname{dist}\left(x_{\lambda}, x_{2 \lambda}\right)$.
Then $\operatorname{dist}\left(x_{\lambda+k}, x_{2 \lambda+2 k}\right)=d_{\lambda}+k \bmod \mu$.

Floyd's cycle finding algorithm

λ is the smallest integer j such that $x_{j}=f^{j}\left(x_{0}\right)$ is in the cycle.

Let $d_{\lambda}=\operatorname{dist}\left(x_{\lambda}, x_{2 \lambda}\right)$.
Then
$\operatorname{dist}\left(x_{\lambda+k}, x_{2 \lambda+2 k}\right)=d_{\lambda}+k \bmod \mu$.
Thus, after at most μ tries, the algorithm finds i such that $x_{i}=x_{2 i}$, and x_{i} is in the cycle.

Floyd's cycle finding algorithm

We need

- at most λ for loops to reach the cycle
- at most μ for loops to detect it

Functional graphs statistics.

f behaves like a RF, x_{0} is randomly drawn. We thus expect

- $\lambda=O\left(2^{n / 2}\right)$
- $\mu=O\left(2^{n / 2}\right)$

Floyd's cycle finding algorithm

We need

- at most λ for loops to reach the cycle
- at most μ for loops to detect it

Functional graphs statistics.

f behaves like a RF, x_{0} is randomly drawn. We thus expect

- $\lambda=O\left(2^{n / 2}\right)$
- $\mu=O\left(2^{n / 2}\right)$

$$
\begin{aligned}
& \text { parameters }: f \in \mathfrak{F}_{2^{n}} \\
& \text { 1: } x_{0} \leftarrow R \mathbb{F}_{2}^{n} \\
& \text { 2: turtle, hare } \leftarrow x_{0}, x_{0} \\
& \text { 3: for } i=1 \text { to } 2^{n}-1 \text { do } \\
& \text { 4: } \quad \text { turtle } \leftarrow f(\text { turtle }) \\
& \text { 5: hare } \leftarrow f^{2}(\text { hare }) \\
& \text { 6: if turtle }=\text { hare then } \\
& \text { 7: return turtle } \\
& \text { 8: end if } \\
& \text { 9: end for }
\end{aligned}
$$

One can show that Floyd's time complexity is in $O\left(2^{n / 2}\right)$

Floyd's cycle finding algorithm

We need

- at most λ for loops to reach the cycle
- at most μ for loops to detect it

Functional graphs statistics.

f behaves like a RF, x_{0} is randomly drawn. We thus expect

- $\lambda=O\left(2^{n / 2}\right)$
- $\mu=O\left(2^{n / 2}\right)$

```
parameters : \(f \in \mathfrak{F}_{2^{n}}\)
    1: \(x_{0} \leftarrow_{R} \mathbb{F}_{2}^{n}\)
    2: turtle, hare \(\leftarrow x_{0}, x_{0}\)
    3: for \(i=1\) to \(2^{n}-1\) do
    4: \(\quad\) turtle \(\leftarrow f\) (turtle)
    5: \(\quad\) hare \(\leftarrow f^{2}\) (hare)
        if turtle \(=\) hare then
        return turtle
        end if
    9: end for
```

One can show that Floyd's time complexity is in $O\left(2^{n / 2}\right)$
... and it is straightforward that the memory complexity is negligible.

Plan

(1) Random function statistics

(2) Memory-negligible collision search

(3) State recovery attack against HMAC

Message Authenticated Code (MAC) algorithms

Definition. A Message Authenticated Code algorithm is a symmetric algorithm that takes as input a secret key k and an arbitrary length message m to produce a fixed length tag that guarantees the integrity of the message.

Generation and verification procedure. Alice and Bob share a secret k.
(1) Alice (sender)

- Using the secret and a MAC algorithm MAC, Alice computes a tag $T=M A C_{k}(M)$.
- Alice sends (M, T) through an unsafe communication channel.
(2) Bob (receiver)
- Bob receives (M^{\prime}, T^{\prime}).
- Bob computes $\operatorname{MAC}_{k}\left(M^{\prime}\right)$. If it is equal to T^{\prime}, then he concludes that M^{\prime} is the message sent by Alice. Otherwise, he discards $\left(M^{\prime}, T^{\prime}\right)$.

Hash-based MACs

Hash functions can be used to build MACs.

- A good hash function behaves like a random oracle.
- It is easy to build a secure MAC with a RO.
- With a real hash function, it is essential to study generic attacks.
- There is a great number of papers which analyse the generic security of HMACs.

In this presentation. We present a 2013 state recovery attack by Leurent, Peyrin and Wang on the family of hash-based MACs with the following structure (e.g. HMAC [BCK96]).

State-recovery attack on HMAC [LPW13]

State-recovery attack on HMAC [LPW13]

- Let β be a random fixed block, and consider the message $M=\underbrace{\beta\|\cdots\| \beta}_{\ell}$.

State-recovery attack on HMAC [LPW13]

- Let β be a random fixed block, and consider the message $M=\underbrace{\beta\|\cdots\| \beta}_{\ell}$.
- We expect

$$
\left.\begin{array}{rl}
f_{\beta} \quad: \quad \mathbb{F}_{2}^{n} & \longrightarrow \mathbb{F}_{2}^{n} \\
x & \longmapsto
\end{array}\right) h(\beta \| x)
$$

to behave as a random function.

State-recovery attack on HMAC [LPW13]

- Let β be a random fixed block, and consider the message $M=\underbrace{\beta\|\cdots\| \beta}_{\ell}$.
- We expect

$$
\begin{aligned}
f_{\beta}: \mathbb{F}_{2}^{n} & \longrightarrow \mathbb{F}_{2}^{n} \\
x & \longmapsto h(\beta \| x)
\end{aligned}
$$

to behave as a random function.

- Since the main component has size $0.76 \cdot 2^{n}, x_{0}=I_{k}$ is in it WHP.

Idea 1: use two messages which reach the same state

Two issues: Message size + the state is not recovered

Idea 2: reach the cycle twice

- $M_{1}=[\beta]^{2^{2 / 2}+\mu}| |[1]| |[\beta]^{2^{n / 2}}$
- $M_{2}=[\beta]^{2^{2 / 2}}\|[1]\|[\beta]^{2 n / 2}+\mu$
reach the same state with constant probability.
Still no state recovery.

Idea 2: reach the cycle twice

- $M_{1}=[\beta]^{2^{2 / 2}+\mu}| |[1]| |[\beta]^{2^{n / 2}}$
- $M_{2}=[\beta]^{2^{2 / 2}}\|[1]\|[\beta]^{2 n / 2}+\mu$
reach the same state with constant probability.
Still no state recovery. Solution: use the root of the main tree α.

Idea 3: use the root of the giant tree

- Offline Step.

Find the cycle length μ of the main component of f_{β} and the root of the main tree α.
Cost: $O\left(2^{n / 2}\right)$ applications of h.

- Online Step.

Find the smallest z that yields a collision between

- $\operatorname{MAC}\left([\beta]^{z}\|[1]\|[\beta]^{2^{n / 2}+\mu}\right)$
- $\operatorname{MAC}\left([\beta]^{z+\mu}\|[1]\|[\beta]^{n / 2}\right)$.
using binary search.
Cost: $O\left(2^{n / 2} \cdot n\right)$ applications of h.

WCP, the state after $[\beta]^{2}$ is α.

Plan

(1) Random function statistics

(2) Memory-negligible collision search
(3) State recovery attack against HMAC
(4) Generic attack against AEAD modes

Authenticated Encryption

A cryptographic scheme providing Authenticated Encryption ensures both the privacy and integrity of communications.

Authenticated Encryption

A cryptographic scheme providing Authenticated Encryption ensures both the privacy and integrity of communications.

- Privacy: The message can only be read by Alice and Bob.
- Integrity: If the message is modified in the unsafe communication channel, Bob will know.

Authenticated Encryption with Associated Data (AEAD)

A cryptographic scheme providing Authenticated Encryption ensures both the privacy and integrity of communications.

- Privacy: The message can only be read by Alice and Bob.
- Integrity: If the message is modified in the unsafe communication channel, Bob will know.

Associated data : Public data sent alongside the message and whose integrity is also guaranteed.

Authenticated Encryption with Associated Data (AEAD)

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds.

Authenticated Encryption with Associated Data (AEAD)

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds.

It is assumed that: - the adversary is nonce-respecting

- there is no release of unverified plaintext

Duplex-based AEAD modes

Authenticated Encryption with Associated Data

- Either block-cipher based: (tweakable) block cipher + mode
- Or permutation-based: public permutation + keyed mode Ex: Xoodyak $=$ Xoodoo[12] + Cyclist [DHPVAVK20]

Duplex-based modes of operation

- Permutation-based modes introduced by Bertoni, Daemen, Peeters, Van Assche [BDPVA11]
- An adaptation to the AEAD context of the Sponge construction [BDPVA07]
Ex: SpongeWrap [BDPVA11], MonkeyWrap (Ketje) [BDPVAVK14], etc.

Duplex-based AEAD modes [BDPVA11]

- Permutation P operates on a state of length $b=r+c$ bits, where r is the rate and c the capacity. (Think of c as $n!$)
- First r bits : the outer state
- Next c bits: the inner state

Duplex-based AEAD modes [BDPVA11]

- Permutation P operates on a state of length $b=r+c$ bits, where r is the rate and c the capacity.
- First r bits : the outer state

Ex: Xoodyak

- Next c bits : the inner state
$r=192$
- Next c bits: the inner state
$c=192$

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Encryption

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Decryption/verification

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Decryption/verification

Guessing x_{I-1} allows to build a forgery!

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Total time complexity of an attack

$$
\mathscr{T}=\sigma_{e}+\sigma_{d}+q_{P}+t_{\text {extra-op }}
$$

where
σ_{e} is the number of online calls to P caused by encryption queries
σ_{d} is the number of online calls to P caused by forgery attempts q_{P} is the number of offline queries to P or P^{-1}

Our motivation

Assuming a sufficiently large key/tag length:

:...: proven security
known attacks
σ_{d} is the number of online calls to P caused by forgery attempts α is a small constant

Our motivation

Assuming a sufficiently large key/tag length:

[^0]σ_{d} is the number of online calls to P caused by forgery attempts α is a small constant

Main observation

Decrypting the ciphertext/tag pair $\left(C=C_{0}\|\cdots\| C_{I-1} ; T\right)$

Main observation

Decrypting the ciphertext/tag pair $\left(C=C_{0}\|\cdots\| C_{I-1} ; T\right)$

Main observation

Decrypting the long ciphertext/tag pair $(\beta_{\ell}=\underbrace{\beta\|\cdots\| \beta}_{\ell} ; T)$

Main observation

Decrypting the long ciphertext/tag pair $(\beta_{\ell}=\underbrace{\beta\|\cdots\| \beta}_{\ell} ; T)$

The tag verification iterates the function $f_{\beta}: \mathbb{F}_{2}^{c} \rightarrow \mathbb{F}_{2}^{c}$

Main observation

Decrypting the long ciphertext/tag pair $(\beta_{\ell}=\underbrace{\beta\|\cdots\| \beta}_{\ell} ; T)$

The tag verification iterates the function $f_{\beta}: \mathbb{F}_{2}^{c} \rightarrow \mathbb{F}_{2}^{c}$

- For a random β, we expect f_{β} to behave as a random function drawn in \mathfrak{F}_{2} c.
- For each nonce, we expect x_{0} to behave as a random point drawn in the graph of f_{β}.

Reminder: graph of a random function f in $\mathfrak{F}_{2} c$

Average...

- Size of the largest component: $2^{c} \times 0.76$.
[FO89]
- Cycle/tail length of a random point: $2^{\frac{c}{2}} \sqrt{\pi / 8}$

Reminder: graph of a random function f in $\mathfrak{F}_{2} c$

The probability that a random function has a component

- of cycle length at most $\leq 2^{\frac{c}{2}-\nu} \rightarrow$ its cycle is exceptionally small:
- of size at least $\geq 2^{c} \times s \rightarrow$ this component is reasonably large;

$$
p_{s, \nu} \approx \sqrt{\frac{2(1-s)}{\pi s}} 2^{-\nu}
$$

[DeLaurentis87]

Ex: proba for $s=65 \%$ and $\nu=\frac{c}{4}\left(\right.$ cycle of length $\left.\leq 2^{\frac{c}{4}}\right): 0.6 \times 2^{-\frac{c}{4}}$

Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...
\rightarrow Since the component is large, x_{0} belongs to it with good probability (≈ 0.65)

Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...
\rightarrow Since the component is large, x_{0} belongs to it with good probability (≈ 0.65)
\rightarrow If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability

Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...
\rightarrow Since the component is large, x_{0} belongs to it with good probability (≈ 0.65)
\rightarrow If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability
\rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ i.e. at most $2^{\frac{c}{4}}$ possible tags

Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...
\rightarrow Since the component is large, x_{0} belongs to it with good probability (≈ 0.65)
\rightarrow If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability
\rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ i.e. at most $2^{\frac{c}{4}}$ possible tags
Resulting forgery attack: try the $\leq 2^{\frac{c}{4}}$ possible values for T.

Core idea of our forgery attack

Precomputation phase

Find β s.t. f_{β} has a large component $\left(\geq 0.65 \times 2^{c}\right)$ with an exceptionnally small cycle ($\leq 2^{\frac{c}{4}}$), recover this cycle.

Online phase

Submit ($N, A, C=\underbrace{\beta\|\cdots\| \beta}_{\ell}, T$) queries to the decryption oracle where:

- N is randomly sampled
- A is set to the empty string
- ℓ is 'big enough' $\left(\approx 2^{\frac{c}{2}}\right)$
- $T=P_{\text {final }}(\beta \| x), \quad$ for x in the small cycle

Simplified complexity analysis (precomputation phase)

Precomputation phase: Find β s.t. f_{β} has a large component $\left(\geq 0.65 \times 2^{c}\right)$ with an exceptionnally small cycle $\left(\leq 2^{\frac{c}{4}}\right)$, recover this cycle.

Complexity analysis:

- Drawing about $1 / p_{s, \nu} \approx 2^{\frac{c}{4}}$ random β^{\prime} s
- For each β, investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3 c}{4}}$ applications of P.

Simplified complexity analysis (precomputation phase)

Precomputation phase: Find β s.t. f_{β} has a large component $\left(\geq 0.65 \times 2^{c}\right)$ with an exceptionnally small cycle $\left(\leq 2^{\frac{c}{4}}\right)$, recover this cycle.

Complexity analysis:

- Drawing about $1 / p_{s, \nu} \approx 2^{\frac{c}{4}}$ random β^{\prime} s
- For each β, investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3 c}{4}}$ applications of P.

Note: the algorithm includes a test that the component is likely to be large enough.

Simplified complexity analysis (online phase)

Online phase. Submit ($N, A, C=\underbrace{\beta\|\cdots\| \beta}_{\ell}, T$) queries to the decryption oracle where $T=F_{\text {final }}(\beta \| x), x$ in the cycle.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C=\underbrace{\beta\|\cdots\| \beta}_{\ell}, T)$ queries to the decryption oracle where $T=F_{\text {final }}(\beta \| x), x$ in the cycle.

Complexity analysis:

- x_{0} belongs to the desired component with probability $s=65 \%$
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell=3 \times 2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3 c}{4}}$ applications of P.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C=\underbrace{\beta\|\cdots\| \beta}_{\ell}, T)$ queries to the decryption oracle where $T=F_{\text {final }}(\beta \| x), x$ in the cycle.

Complexity analysis:

- x_{0} belongs to the desired component with probability $s=65 \%$
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell=3 \times 2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3 c}{4}}$ applications of P.

Note: At the cost of a more expensive prec. phase, the complexity of this step can be brought close(r) to $2^{\frac{c}{2}}$.

Small scale experiments

- Our attack is somewhat heuristic based.
\rightarrow Ex: corroborate that the f_{β} behave as random functions in practice.
- We implemented experiments with Xoodoo[12] as P.
- All our practical results match our heuristic-based results.
\rightarrow Ex: the average tail length for a random f_{β} matches the average tail length for a random permutation.
- We also implemented the precomputation algorithm.
\rightarrow We found some valid β values for c up to 40 .

Summary of our results

Our attack

- has total time complexity $\leq 21 \times 2^{\frac{3 c}{4}}$;
- a probability of success $\geq 95 \%$;
- can be transformed into a key recovery at a negligible extra cost if $P_{i n i t}$ is reversible (how: using the plaintext);
- is applicable to the modes of Norx v2, Ketje, KNOT and Keyak;
- breaks the 184 -bit security claim made by the designers of Xoodyak with an attack of complexity 2^{148};
- \neq attack on HMAC that has complexity $\approx 2^{n / 2}$: for a given C, we cannot ask an oracle to provide a valid T.

Preventing the attack

Two main features frustrate our cryptanalysis:

- Key-dependent final phase. (ASCON, NORX v3)
\rightarrow a correct guess on $x_{\ell-1}$ cannot be transformed into a forgery (still a state recovery)
- No outer state overwriting. (Beetle, SPARKLE)
\rightarrow the decryption of $\underbrace{\beta\|\cdots\| \beta}_{\ell}$ does not correspond to the iteration of a function

Thank you for your attention :)

Any questions?

[^0]: proven security
 known attacks

