Generic attacks based on functional graphs

Rachelle Heim Boissier

Université de Versailles Saint-Quentin-en-Yvelines

Séminaire de Cryptographie de Rennes

Generic attacks based on functional graphs 1/40

Introduction

This talk is about:

@ Symmetric cryptanalysis
@ Using random function graphs statistics in generic attacks ...

@ ... against a variety of iterated constructions:

o Hash functions [Floyd]
o Message authenticated codes (MAC) modes [LPW13]
o Authenticated encryption (AE) modes [GHKR23]

Generic attacks based on functional graphs 2 /40

© Random function statistics

Generic attacks based on functional graphs 3 /40

Random functions

Definition:

ZFp is the set of functions which map a finite set of size N € N* to itself.

Our main focus: the graph of f (randomly drawn) in %y

Functional graph

The graph of f, denoted by G(f), is a directed graph such that a vertex
goes from node i to node j if and only if f(i) = j.

Generic attacks based on functional graphs 4 /40

Functional graphs : an example

Functional graph

The graph of f, denoted by G(f), is a directed graph such that a vertex
goes from node i to node j if and only if (i) = j.

f : F3—TF3
0 —2 7
4

— 1
—3 OMS
— 5 2 3
— 2
— 7 %6

— 1
— 3

~NOoO ok~ W N

Generic attacks based on functional graphs 5/ 40

Functional graphs : important definitions (1)

@ The graph of f can be seen as a set of
connected components.

Generic attacks based on functional graphs 6 /40

Functional graphs : important definitions (1)

@ The graph of f can be seen as a set of
connected components.

@ Each connected component has a unique
cycle.

Generic attacks based on functional graphs 6 /40

Functional graphs : important definitions (1)

'S

@ The graph of f can be seen as a set of
connected components.

@ Each connected component has a unique
cycle.

@ Each cyclic node is the root of a tree.

Generic attacks based on functional graphs

6/ 40

Functional graphs : important definitions (2)

For any xo € G(f)

Generic attacks based on functional graphs 7 /40

Functional graphs : important definitions (2)

For any xo € G(f)

o (x;i = f(x0))ien

Generic attacks based on functional graphs 7 /40

Functional graphs : important definitions (2)

For any xo € G(f)
@ (x; == f(x0))ien is eventually periodic.

@ (x;)ien graphically corresponds to a path
linked to a cycle

Generic attacks based on functional graphs 7 /40

Functional graphs : important definitions (2)

For any xo € G(f)

@ (x; == f(x0))ien is eventually periodic.
X0
@ (x;)ien graphically corresponds to a path
linked to a cycle /
We define

@ Tail length.
A(xo) is the smallest i s.t. x; is in the cycle.

@ Cycle length.
1(x0) number of nodes in the cycle.

7/ 40

Generic attacks based on functional graphs

Random function graphs : important statistics

For f randomly drawn in §y:

@ Expected size of f's largest component : 0.76/V
@ Expected size of f's largest tree : 0.5N
@ For x a random node:

o Expected value of its tail length A(x) : /7/N/8
o Expected value of its cycle length p(x) : /7N/8

Generic attacks based on functional graphs 8 /40

Random function graphs : important statistics

For f randomly drawn in §y:

@ Expected size of f's largest component : 0.76/V

@ Expected size of f's largest tree : 0.5N
@ For x a random node:

o Expected value of its tail length A(x) : /7/N/8
o Expected value of its cycle length p(x) : /7N/8

Many more statistics are known and used in generic attacks.
[DeLaurentis88] [FO89] [Harris60] . ..

Generic attacks based on functional graphs 8 /40

© Memory-negligible collision search

Generic attacks based on functional graphs 9 /40

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 —]
such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).

e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').

Generic attacks based on functional graphs 10 / 40

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 —]
such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).

e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').

Generic collision attack: Compute H(m) for O(2"/?) messages m, store
them in a list, sort it. WHP, you find a collision (Birthday paradox).

Generic attacks based on functional graphs 10 / 40

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 —]
such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).
e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').
Generic collision attack: Compute H(m) for O(2"/?) messages m, store

them in a list, sort it. WHP, you find a collision (Birthday paradox).

Problem: Memory complexity is high.

Generic attacks based on functional graphs 10 / 40

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 —]
such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).

e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').

Generic collision attack: Compute H(m) for O(2"/?) messages m, store
them in a list, sort it. WHP, you find a collision (Birthday paradox).
Problem: Memory complexity is high.

Solution: a generic memory-negligible collision attack using
functional graphs.

Generic attacks based on functional graphs 10 / 40

A memory-negligible collision attack on H

Let f € §o» be defined as
f : F; — TF7

x +— H(x)

Step 1. Floyd’s cycle finding algorithm allows to recover a node x. in a
cycle of f's graph
e in time O(2"/?);

@ using a negligible amount of memory.

Step 2. Using xc, it is easy to
@ recover the cycle's length
o find a collision on f, and thus on H,

in time O(2"/2) and with negligible memory.

Generic attacks based on functional graphs 11 / 40

Floyd's cycle finding algorithm

parameters : f € Fon
1: Xp <R Fg
2: turtle, hare < xp, Xp
3: fori=1to2"—1do
4: turtle < f(turtle)
5. hare « f2(hare)
6 if turtle = hare then
7: return turtle
8 end if
9: end for

Generic attacks based on functional graphs 12 / 40

Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xp) is in the cycle.

Generic attacks based on functional graphs 13 / 40

Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xp) is in the cycle.

XX

Generic attacks based on functional graphs 13 / 40

Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xp) is in the cycle.

Let dy = dist(xy, x2))-

XX

Generic attacks based on functional graphs 13 / 40

Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xo) is in the cycle.

Let d) = diSt(X)\,Xg)\).
Then %
diSt(f(X)\), f2(X2)\)) =dy+1 mod u. A

Generic attacks based on functional graphs 13 / 40

Floyd's cycle finding algorithm

X0

2
A is the smallest integer j such that f
xj = f/(xo) is in the cycle.
Let d) = diSt(X)\,Xg)\).
X\
Then

diSt(X)\Jrk,Xg,\Jrzk) =d\+k mod u. A

Generic attacks based on functional graphs 13 / 40

Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xo) is in the cycle.

Let d) = diSt(X)\,Xg)\).
Then

dist(xx1k, X2x+2k) = dx + k mod p.

Thus, after at most p tries, the
algorithm finds 7 such that x; = xp;, and
X; is in the cycle.

Generic attacks based on functional graphs 13 / 40

Floyd's cycle finding algorithm

We need - Fea
arameters : n
@ at most A for loops to reach the pl: xo ¢ F2 2
cycle 2. turtle, hare + xp, Xo
@ at most u for loops to detect it 3: fori=1to 2" —1do
4: turtle < f(turtle)
Functional graphs statistics. 5. hare < f2(hare)
f behaves like a RF, xp is randomly g4 if turtle = hare then
drawn. We thus expect 7: return turtle
o \=0(2"?) g endif
o = 0(2"?) 9: end for

Generic attacks based on functional graphs 14 / 40

Floyd's cycle finding algorithm

We need - Fea
arameters : n
@ at most A for loops to reach the pl: xo ¢ F2 2
cycle 2. turtle, hare + xp, Xo
@ at most u for loops to detect it 3: fori=1to 2" —1do
4: turtle < f(turtle)
Functional graphs statistics. 5. hare < f2(hare)
f behaves like a RF, xp is randomly g4 if turtle = hare then
drawn. We thus expect 7: return turtle
o \=0(2"?) g endif
o = 0(2"?) 9: end for

One can show that Floyd's time complexity is in O(2"/?)

Generic attacks based on functional graphs 14 / 40

Floyd's cycle finding algorithm

We need - Fea
arameters : n
@ at most A for loops to reach the pl: xo ¢ F2 2
cycle 2. turtle, hare + xp, Xo
@ at most u for loops to detect it 3: fori=1to 2" —1do
4: turtle < f(turtle)
Functional graphs statistics. 5. hare < f2(hare)
f behaves like a RF, xp is randomly g4 if turtle = hare then
drawn. We thus expect 7: return turtle
o \=0(2"?) g endif
o = 0(2"?) 9: end for

One can show that Floyd's time complexity is in O(2"/?)

... and it is straightforward that the memory complexity is negligible.

Generic attacks based on functional graphs 14 / 40

© State recovery attack against HMAC

Generic attacks based on functional graphs 15 / 40

Message Authenticated Code (MAC) algorithms

Definition. A Message Authenticated Code algorithm is a symmetric
algorithm that takes as input a secret key k and an arbitrary length message m
to produce a fixed length tag that guarantees the integrity of the message.

Generation and verification procedure. Alice and Bob share a secret k.

© Alice (sender)
e Using the secret and a MAC algorithm MAC, Alice computes a tag
T = MAC(M).
o Alice sends (M, T) through an unsafe communication channel.

@ Bob (receiver)

o Bob receives (M’, T").
o Bob computes MAC,(M’). If it is equal to T, then he concludes that
M’ is the message sent by Alice. Otherwise, he discards (M’, T').

Generic attacks based on functional graphs 16 / 40

Hash-based MACs

Hash functions can be used to build MACs.
@ A good hash function behaves like a random oracle.
@ It is easy to build a secure MAC with a RO.
@ With a real hash function, it is essential to study generic attacks.

@ There is a great number of papers which analyse the generic security of
HMACs.

In this presentation. We present a 2013 state recovery attack by Leurent,

Peyrin and Wang on the family of hash-based MACs with the following structure
(e.g. HMAC [BCK96]).

Ml M2 MI 1

Generic attacks based on functional graphs 17 / 40

State-recovery attack on HMAC [LPW13]

M1 M2 MI 1

Generic attacks based on functional graphs 18 / 40

State-recovery attack on HMAC [LPW13]

B B B B |M|
LOYLNLDY LYW

h h h h 8k
RN —>| |—> MACG(M)

@ Let B be a random fixed block, and consider the message M = §||---||5.
——

4

Generic attacks based on functional graphs 18 / 40

State-recovery attack on HMAC [LPW13]

fs
B B B B |M|
BGOLNY LG
n h h h h 8k
I+ —>| [MAC(M)
@ Let B be a random fixed block, and consider the message M = §||---||5.
——
@ We expect L
f5 : Fg — Fg

x

— h(B]lx)

to behave as a random function.

Generic attacks based on functional graphs 18 / 40

State-recovery attack on HMAC [LPW13]

fs
B B B B |M|
BGOLNY LG
n h h h h 8k
I+ —>| [MAC(M)
@ Let B be a random fixed block, and consider the message M = §||---||5.
——
@ We expect L
fﬁ : Fg — Fg

x > h(B]lx)

to behave as a random function.

@ Since the main component has size 0.76 - 27, xg = I, is in it WHP.

Generic attacks based on functional graphs 18 / 40

Idea 1: use two messages which reach the same state

B B B B |M|
LOYLNLDY LYW
n h h h h 8k
I+ —>| [MAC(M)
X0 X0
in/g X2"’/2
M= [M =[P

Two issues: Message size + the state is not recovered

Generic attacks based on functional graphs

19 / 40

Idea 2: reach the cycle twice

X0 X0 X0

M = [} M = [B12"||[1] M = (81118

o My = [B12"*+¢||[1]]|[81""
o My = [B1¥"||[1]]|[B]"*

reach the same state with constant probability.

Still no state recovery.

Generic attacks based on functional graphs 20 / 40

Idea 2: reach the cycle twice

X0 X0 X0

on/2 on/2 on/2 on/2

M = [6] M =[] 1I[1] M =[] [[[11][8]

o My =[G |[1]]|[8]>"
o My = [B1¥"||[1]]|[B]"*

reach the same state with constant probability.

Still no state recovery. Solution: use the root of the main tree «.

Generic attacks based on functional graphs 20 / 40

|dea 3: use the root of the giant tree

o Offline Step.
Find the cycle length 1 of the main component of f3 and the root of
the main tree a.
Cost: O(2"/?) applications of h.

@ Online Step.
Find the smallest z that yields a collision between

o MAC([BTII[1IIP""+)
o MAC([BI+[|[1I1I[B1").

using binary search.
Cost: O(2"/2 . n) applications of h.

WCP, the state after [§]* is a.

Generic attacks based on functional graphs 21/ 40

@ Generic attack against AEAD modes

Generic attacks based on functional graphs

Authenticated Encryption

%%

Unsafe channel
Alice Bob

A cryptographic scheme providing Authenticated Encryption ensures
both the privacy and integrity of communications.

Generic attacks based on functional graphs 23 /40

Authenticated Encryption

%%

Unsafe channel
Alice Bob

A cryptographic scheme providing Authenticated Encryption ensures
both the privacy and integrity of communications.

@ Privacy: The message can only be read by Alice and Bob.

@ Integrity: If the message is modified in the unsafe communication channel,
Bob will know.

Generic attacks based on functional graphs 23 /40

Authenticated Encryption with Associated Data (AEAD)

%%

Unsafe channel
Alice Bob

A cryptographic scheme providing Authenticated Encryption ensures
both the privacy and integrity of communications.

@ Privacy: The message can only be read by Alice and Bob.

@ Integrity: If the message is modified in the unsafe communication channel,
Bob will know.

Associated data : Public data sent alongside the message and whose integrity is
also guaranteed.

Generic attacks based on functional graphs 23 /40

Authenticated Encryption with Associated Data (AEAD)

Alice Bob
K, N, M, A K

Generic attacks based on functional graphs 24 / 40

Authenticated Encryption with Associated Data (AEAD)

Alice Bob
K, N, M, A K
(C, T) = Enc(K,N, M, A)

Generic attacks based on functional graphs 24 / 40

Authenticated Encryption with Associated Data (AEAD)

— (MACT) —M—

Alice Bob
K, N, M, A K
(C, T) = Enc(K,N, M, A)

Generic attacks based on functional graphs 24 / 40

Authenticated Encryption with Associated Data (AEAD)

—— (MACT) —M—

Alice Bob
K, N, M, A K
(C, T) = Enc(K,N,M,A) if Verif(K,N,A,C, T)

return M = Dec(K, N, C, A)

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag
verification succeeds.

Generic attacks based on functional graphs 24 / 40

Authenticated Encryption with Associated Data (AEAD)

- > (NACGT) —

Alice Bob
K, N, M, A K
(C,T) = Enc(K,N,M,A) if Verif(K,N,A,C, T)

return M = Dec(K, N, C, A)

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag
verification succeeds.

It is assumed that: - the adversary is nonce-respecting
- there is no release of unverified plaintext

Generic attacks based on functional graphs 24 / 40

Duplex-based AEAD modes

Authenticated Encryption with Associated Data

@ Either block-cipher based: (tweakable) block cipher + mode

@ Or permutation-based: public permutation + keyed mode
Ex: X0ooDYAK = X00D00[12] + Cyclist [DHPVAVK20]

Duplex-based modes of operation

@ Permutation-based modes introduced by Bertoni, Daemen, Peeters, Van
Assche [BDPVAL1]

@ An adaptation to the AEAD context of the Sponge construction
[BDPVAO7]

Ex: SPONGEWRAP [BDPVAL1], MonkeyWrap (KETJE) [BDPVAVK14], etc.

Generic attacks based on functional graphs 25/ 40

Duplex-based AEAD modes [BDPVALI]

A Mo CO Ml C1 Ml—l Cl—l T
fl\ M 'S
. .
(K,N) - P Ffinal
—> >
| - [
initial phase plaintext processing final phase

@ Permutation P operates on a state of length b = r + ¢ bits, where r is the
rate and c the capacity. (Think of ¢ as n!)

@ First r bits : the outer state
@ Next c bits : the inner state

Generic attacks based on functional graphs 26 / 40

Duplex-based AEAD modes [BDPVALI]

A Mo CO Ml C1 Ml—l Cl—l T
fl\ M 'S
> =
(K,N) - P Ffinal
— >
| - [
initial phase plaintext processing final phase

@ Permutation P operates on a state of length b = r + ¢ bits, where r is the

rate and c the capacity. Ex: XOODYAK
@ First r bits : the outer state r = 192

@ Next c bits : the inner state c =192

Generic attacks based on functional graphs 26 / 40

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification

succeeds
Encryption
A MG M. G Mi—1 G T
slndlp A1
D D
(K, N) —|Finit P P| Ffinal

Generic attacks based on functional graphs 27 / 40

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification
succeeds

Decryption/verification

?
A My G My G Mi—1 G Tr=T
(K, N) —|Fini¢ P P Ffinal
—- X0 |— X1 > - X|—1—»
N / / -/

Generic attacks based on functional graphs 27 / 40

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification
succeeds

Decryption/verification

?
A M GG M G Mi_1C—1 r=T
(K, N) = Fini¢ P P Ffinal
—- X0 |—> X1 > - X|—1—|
-/ / / (N

Guessing x;—1 allows to build a forgery!

Generic attacks based on functional graphs 27 / 40

Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification
succeeds

Total time complexity of an attack

T =0e+tog+qp+ textra—op

where
oe is the number of online calls to P caused by encryption queries
04 is the number of online calls to P caused by forgery attempts

gp is the number of offline queries to P or P!

Generic attacks based on functional graphs 27 / 40

Assuming a sufficiently large key/tag length:

T 2% min (237 (2;2) /e
N - |
e, Lo | -zc
[BDPVALL] [JLM14] [JLM14]
[JLMSY18] [JLMSY18]
\ J
~—

_____) gap

. known attacks

o4 is the number of online calls to P caused by forgery attempts
« is a small constant

Generic attacks based on functional graphs 28 / 40

Assuming a sufficiently large key/tag length:

T 23 min (2%,5—:’) 2t 2 /e
................. e
_________________]
[BDPVA11] [JLM14] Our work [JLM14]
[JLMSY18] [JLMSY18]
gap

I proven security

- known attacks

04 is the number of online calls to P caused by forgery attempts
« is a small constant

Generic attacks based on functional graphs 28 / 40

Main observation

Decrypting the ciphertext/tag pair (C = Gy || ---||Ci—1; T)
?
A Mo Co Ml Cl M/—l Cl—l r=T
(K, N) —=|Finit P P Frinal
—> X0—>| [—>X1— | - - X|—1—»
— —/ —/ —

Generic attacks based on functional graphs 29 / 40

Main observation

Decrypting the ciphertext/tag pair (C =Gy || ---||Ci=1; T)
A Co G lel T
A Lﬂ L/\ L/ﬁ
(K, N) = Finit P P Ffinal
—>- X0 [—> X1 — - X|—1—
— % % —/

Generic attacks based on functional graphs 29 / 40

Main observation

Decrypting the long ciphertext/tag pair (8¢ = B||---||15; T)

A 8 8 ‘ 8 T

(K, N) = |Finit Finar

— X0 — X1 PR Xp—1

Generic attacks based on functional graphs 30/ 40

Main observation

Decrypting the long ciphertext/tag pair (8¢ = B||---||15; T)
‘
A B B B T

(K, N) = |Finit Finar

— X0 — X1 PR Xp—1

The tag verification iterates the function f3 : F§ — [F§

B

Xi = Xi+1

Generic attacks based on functional graphs 30/ 40

Main observation

Decrypting the long ciphertext/tag pair (8¢ = B||---||15; T)
‘
A B B B T

(K, N) = |Finit Finar

— X0 — X1 PR Xp—1

The tag verification iterates the function f3 : F§ — [F§

B

@ For a random (3, we expect f3 to behave as a
random function drawn in Foc.

@ For each nonce, we expect xp to behave as a

X X1 random point drawn in the graph of f3.

Generic attacks based on functional graphs 30/ 40

Reminder: graph of a random function f in §oc

o

Average. ..
@ Size of the largest component: 2¢ x 0.76. [FO89]
@ Cycle/tail length of a random point: 2%/7/8

Generic attacks based on functional graphs 31/ 40

Reminder: graph of a random function f in §»-

The probability that a random function has a component
@ of cycle length at most < 23~% — its cycle is exceptionally small:
@ of size at least > 2¢ x s — this component is reasonably large;

2(1-5s) v [DeLaurentis87]

Ps,y =
s

Ex: proba for s = 65% and v = § (cycle of length < 25): 0.6 x 274

Generic attacks based on functional graphs 31/ 40

Core idea of our forgery attack

Graph of Fa

(K7 N) _VFinit Ffinal

— X0 — X1 P Xp—1

Generic attacks based on functional graphs

Core idea of our forgery attack

Graph of Fa
X0

A 8 8 T

B
(K7 N) _VFinit Ffinal
— X0 — X1 P Xp—1

Generic attacks based on functional graphs

Core idea of our forgery attack

Graph of Fa

(K7 N) _VFinit Ffinal

— X0 — X1 P Xp—1

Generic attacks based on functional graphs

Core idea of our forgery attack

Graph of Fa

Xe—1

A B

B B r
(K7 N) _>Finit P P Ffinal
— X0 — X1 e X¢—1

Generic attacks based on functional graphs

Core idea of our forgery attack

Graph of Fg

X0

X1
X2

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...

Generic attacks based on functional graphs 33 /40

Core idea of our forgery attack

Graph of Fg
Xo

X1
X2

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...

— Since the component is large, xo belongs to it with good probability (a 0.65)

Generic attacks based on functional graphs 33 /40

Core idea of our forgery attack

Graph of Fg
Xo

X1
X2

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...
— Since the component is large, xo belongs to it with good probability (a 0.65)

— If so, if £ is ‘large enough’ (say ¢ =~ 2%), X¢—1 is in the cycle with good probability

Generic attacks based on functional graphs 33 /40

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...

— Since the component is large, xo belongs to it with good probability (a 0.65)
— If so, if £ is ‘large enough’ (say ¢ =~ 2%), X¢—1 is in the cycle with good probability

— If so, there are at most 24 possible values for x,_; i.e. at most 2% possible tags

Generic attacks based on functional graphs 33 /40

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...

— Since the component is large, xo belongs to it with good probability (a 0.65)
— If so, if £ is ‘large enough’ (say ¢ =~ 2%), X¢—1 is in the cycle with good probability

— If so, there are at most 24 possible values for x,_; i.e. at most 2% possible tags

Resulting forgery attack: try the < 2% possible values for T. J

Generic attacks based on functional graphs 33 /40

Core idea of our forgery attack

Precomputation phase
Find 3 s.t. fg has a large component (> 0.65 x 2¢) with an key
exceptionnally small cycle (< 2%), recover this cycle. independant

Online phase
Submit (N, A, C = S||---||8, T) queries to the decryption oracle where:
———

14

@ N is randomly sampled
@ A is set to the empty string
@ /is 'big enough’ (= 2%)

o T = Pgnat(Bl] x), for x in the small cycle

Generic attacks based on functional graphs 34 /40

Simplified complexity analysis (precomputation phase)

Precomputation phase: Find § s.t. f3 has a large component
(> 0.65 x 2°) with an exceptionnally small cycle (< 2§), recover this
cycle.

Complexity analysis:

e Drawing about 1/ps, ~ 2% random B's

@ For each 3, investigating Fg costs ~ 23 per 3 thanks to Floyd's
algorithm.

The total complexity is ~ 0% applications of P. J

Generic attacks based on functional graphs 35/ 40

Simplified complexity analysis (precomputation phase)

Precomputation phase: Find § s.t. f3 has a large component
(> 0.65 x 2°) with an exceptionnally small cycle (< 2§), recover this
cycle.

Complexity analysis:

e Drawing about 1/ps, ~ 2% random B's

@ For each 3, investigating Fg costs ~ 23 per 3 thanks to Floyd's
algorithm.

The total complexity is ~ 0% applications of P. J

Note: the algorithm includes a test that the component is likely to be
large enough.

Generic attacks based on functional graphs 35/ 40

Simplified complexity analysis (online phase)

Online phase. Submit (N, A, C = j||---|[B, T) queries to the decryption
—_——

¢
oracle where T = Ffna (B]]X), x in the cycle.

Generic attacks based on functional graphs 36 / 40

Simplified complexity analysis (online phase)

Online phase. Submit (N, A, C = j||---|[B, T) queries to the decryption
¢
oracle where T = Ffna (B]]X), x in the cycle.

Complexity analysis:
@ xp belongs to the desired component with probability s = 65%

@ For x;_1 to belong to the cycle with good probability, we set
(=3x23

e We try at most 23 values for T (at most the length of the cycle).

The total complexity is ~ 2% applications of P. J

Generic attacks based on functional graphs 36 / 40

Simplified complexity analysis (online phase)

Online phase. Submit (N, A, C = j||---|[B, T) queries to the decryption
¢
oracle where T = Ffna (B]]X), x in the cycle.

Complexity analysis:
@ xp belongs to the desired component with probability s = 65%

@ For x;_1 to belong to the cycle with good probability, we set
(=3x23

e We try at most 23 values for T (at most the length of the cycle).

The total complexity is ~ 2% applications of P. J

Note: At the cost of a more expensive prec. phase, the complexity of this
step can be brought close(r) to 2%.

Generic attacks based on functional graphs 36 / 40

Small scale experiments

@ Our attack is somewhat heuristic based.

— Ex: corroborate that the fz behave as random functions in practice.

@ We implemented experiments with X00D0OO[12] as P.

@ All our practical results match our heuristic-based results.

— Ex: the average tail length for a random fg matches the average tail length for
a random permutation.

@ We also implemented the precomputation algorithm.

— We found some valid 3 values for ¢ up to 40.

Generic attacks based on functional graphs 37/ 40

Summary of our results

Our attack
@ has total time complexity < 21 x 2%,
@ a probability of success > 95%;

@ can be transformed into a key recovery at a negligible extra cost if P,z is
reversible (how: using the plaintext);

@ is applicable to the modes of Norx v2, KETJE, KNOT and KEYAK;

@ breaks the 184-bit security claim made by the designers of XOODYAK with
an attack of complexity 2142;

@ +# attack on HMAC that has complexity ~ 2"/2: for a given C, we cannot ask
an oracle to provide a valid T.

Generic attacks based on functional graphs 38 /40

Preventing the attack

Two main features frustrate our cryptanalysis:

e Key-dependent final phase. (ASCON, NORX v3)

— a correct guess on xg_1 cannot be transformed into a forgery (still a state
recovery)

e No outer state overwriting. (Beetle, SPARKLE)

— the decryption of S]] ---||8 does not correspond to the iteration of a function
¢

Generic attacks based on functional graphs 39 / 40

Thank you for your attention :)

Any questions?

Generic attacks based on functional graphs 40 / 40

	Random function statistics
	Memory-negligible collision search
	State recovery attack against HMAC
	Generic attack against AEAD modes

