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Introduction

This talk is about:

@ Symmetric cryptanalysis
@ Using random function graphs statistics in generic attacks ...

@ ... against a variety of iterated constructions:

o Hash functions [Floyd]
o Message authenticated codes (MAC) modes [LPW13]
o Authenticated encryption (AE) modes [GHKR23]
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© Random function statistics
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Random functions

Definition:

ZFp is the set of functions which map a finite set of size N € N* to itself.

Our main focus: the graph of f (randomly drawn) in %y

Functional graph

The graph of f, denoted by G(f), is a directed graph such that a vertex
goes from node i to node j if and only if f(i) = j.

Generic attacks based on functional graphs 4 /40



Functional graphs : an example

Functional graph

The graph of f, denoted by G(f), is a directed graph such that a vertex
goes from node i to node j if and only if (i) = j.

f : F3—TF3
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Functional graphs : important definitions (1)

@ The graph of f can be seen as a set of
connected components.
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@ The graph of f can be seen as a set of
connected components.

@ Each connected component has a unique
cycle.

Generic attacks based on functional graphs 6 /40



Functional graphs : important definitions (1)

'S

@ The graph of f can be seen as a set of
connected components.

@ Each connected component has a unique
cycle.

@ Each cyclic node is the root of a tree.

Generic attacks based on functional graphs

6/ 40



Functional graphs : important definitions (2)

For any xo € G(f)
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Functional graphs : important definitions (2)

For any xo € G(f)

o (x;i = f(x0))ien
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Functional graphs : important definitions (2)

For any xo € G(f)
@ (x; == f(x0))ien is eventually periodic.

@ (x;)ien graphically corresponds to a path
linked to a cycle
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Functional graphs : important definitions (2)

For any xo € G(f)

@ (x; == f(x0))ien is eventually periodic.
X0
@ (x;)ien graphically corresponds to a path
linked to a cycle /
We define

@ Tail length.
A(xo) is the smallest i s.t. x; is in the cycle.

@ Cycle length.
1(x0) number of nodes in the cycle.

7/ 40
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Random function graphs : important statistics

For f randomly drawn in §y:

@ Expected size of f's largest component : 0.76/V
@ Expected size of f's largest tree : 0.5N
@ For x a random node:

o Expected value of its tail length A(x) : /7/N/8
o Expected value of its cycle length p(x) : /7N/8
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Random function graphs : important statistics

For f randomly drawn in §y:

@ Expected size of f's largest component : 0.76/V

@ Expected size of f's largest tree : 0.5N
@ For x a random node:

o Expected value of its tail length A(x) : /7/N/8
o Expected value of its cycle length p(x) : /7N/8

Many more statistics are known and used in generic attacks.
[DeLaurentis88] [FO89] [Harris60] . ..
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© Memory-negligible collision search
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Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 — ]
such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).

e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').
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such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).

e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').

Generic collision attack: Compute H(m) for O(2"/?) messages m, store
them in a list, sort it. WHP, you find a collision (Birthday paradox).
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Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 — ]
such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).
e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').
Generic collision attack: Compute H(m) for O(2"/?) messages m, store

them in a list, sort it. WHP, you find a collision (Birthday paradox).

Problem: Memory complexity is high.
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Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 — ]
such that the following properties are verified

o Preimage resistance. Given h € F¢, it is difficult to find m € F3 s.t.
H(m) = h.

@ Second preimage resistance. Given m € F3, it is difficult to find
m # mst. H(m') = H(m).

e Collision resistance. It is difficult to find (m, m"), m # m’ such that
H(m) = H(m').

Generic collision attack: Compute H(m) for O(2"/?) messages m, store
them in a list, sort it. WHP, you find a collision (Birthday paradox).
Problem: Memory complexity is high.

Solution: a generic memory-negligible collision attack using
functional graphs.
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A memory-negligible collision attack on H

Let f € §o» be defined as
f : F; — TF7

x +—  H(x)

Step 1. Floyd’s cycle finding algorithm allows to recover a node x. in a
cycle of f's graph
e in time O(2"/?);

@ using a negligible amount of memory.

Step 2. Using xc, it is easy to
@ recover the cycle's length
o find a collision on f, and thus on H,

in time O(2"/2) and with negligible memory.
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Floyd's cycle finding algorithm

parameters : f € Fon
1: Xp <R Fg
2: turtle, hare < xp, Xp
3: fori=1to2"—1do
4:  turtle < f(turtle)
5. hare « f2(hare)
6 if turtle = hare then
7: return turtle
8 end if
9: end for
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Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xp) is in the cycle.
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Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xp) is in the cycle.
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Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xp) is in the cycle.

Let dy = dist(xy, x2))-

XX
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Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xo) is in the cycle.

Let d) = diSt(X)\,Xg)\).
Then %
diSt(f(X)\), f2(X2)\)) =dy+1 mod u. A

Generic attacks based on functional graphs 13 / 40



Floyd's cycle finding algorithm

X0

2
A is the smallest integer j such that f
xj = f/(xo) is in the cycle.
Let d) = diSt(X)\,Xg)\).
X\
Then

diSt(X)\Jrk,Xg,\Jrzk) =d\+k mod u. A
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Floyd's cycle finding algorithm

A is the smallest integer j such that
xj = f/(xo) is in the cycle.

Let d) = diSt(X)\,Xg)\).
Then

dist(xx1k, X2x+2k) = dx + k  mod p.

Thus, after at most p tries, the
algorithm finds 7 such that x; = xp;, and
X; is in the cycle.
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Floyd's cycle finding algorithm

We need - Fea
arameters : n
@ at most A for loops to reach the pl: xo ¢ F2 2
cycle 2. turtle, hare + xp, Xo
@ at most u for loops to detect it 3: fori=1to 2" —1do
4:  turtle < f(turtle)
Functional graphs statistics. 5. hare < f2(hare)
f behaves like a RF, xp is randomly g4 if turtle = hare then
drawn. We thus expect 7: return turtle
o \=0(2"?) g endif
o = 0(2"?) 9: end for
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Floyd's cycle finding algorithm

We need - Fea
arameters : n
@ at most A for loops to reach the pl: xo ¢ F2 2
cycle 2. turtle, hare + xp, Xo
@ at most u for loops to detect it 3: fori=1to 2" —1do
4:  turtle < f(turtle)
Functional graphs statistics. 5. hare < f2(hare)
f behaves like a RF, xp is randomly g4 if turtle = hare then
drawn. We thus expect 7: return turtle
o \=0(2"?) g endif
o = 0(2"?) 9: end for

One can show that Floyd's time complexity is in O(2"/?)

... and it is straightforward that the memory complexity is negligible.
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© State recovery attack against HMAC
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Message Authenticated Code (MAC) algorithms

Definition. A Message Authenticated Code algorithm is a symmetric
algorithm that takes as input a secret key k and an arbitrary length message m
to produce a fixed length tag that guarantees the integrity of the message.

Generation and verification procedure. Alice and Bob share a secret k.

© Alice (sender)
e Using the secret and a MAC algorithm MAC, Alice computes a tag
T = MAC(M).
o Alice sends (M, T) through an unsafe communication channel.

@ Bob (receiver)

o Bob receives (M’, T").
o Bob computes MAC,(M’). If it is equal to T, then he concludes that
M’ is the message sent by Alice. Otherwise, he discards (M’, T').
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Hash-based MACs

Hash functions can be used to build MACs.
@ A good hash function behaves like a random oracle.
@ It is easy to build a secure MAC with a RO.
@ With a real hash function, it is essential to study generic attacks.

@ There is a great number of papers which analyse the generic security of
HMACs.

In this presentation. We present a 2013 state recovery attack by Leurent,

Peyrin and Wang on the family of hash-based MACs with the following structure
(e.g. HMAC [BCK96]).

Ml M2 MI 1

Generic attacks based on functional graphs 17 / 40



State-recovery attack on HMAC [LPW13]

M1 M2 MI 1
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State-recovery attack on HMAC [LPW13]

B B B B |M|
LOYLNLDY LYW

h h h h 8k
RN —>| |—> MACG(M)

@ Let B be a random fixed block, and consider the message M = §||---||5.
——

4
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State-recovery attack on HMAC [LPW13]

fs
B B B B |M|
BGOLNY LG
n h h h h 8k
I+ —>| [ MAC(M)
@ Let B be a random fixed block, and consider the message M = §||---||5.
——
@ We expect L
f5 : Fg — Fg

x

— h(B]lx)

to behave as a random function.
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State-recovery attack on HMAC [LPW13]

fs
B B B B |M|
BGOLNY LG
n h h h h 8k
I+ —>| [ MAC(M)
@ Let B be a random fixed block, and consider the message M = §||---||5.
——
@ We expect L
fﬁ : Fg — Fg

x > h(B]lx)

to behave as a random function.

@ Since the main component has size 0.76 - 27, xg = I, is in it WHP.
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Idea 1: use two messages which reach the same state

B B B B |M|
LOYLNLDY LYW
n h h h h 8k
I+ —>| [ MAC(M)
X0 X0
in/g X2"’/2
M= [ M =[P

Two issues: Message size + the state is not recovered

Generic attacks based on functional graphs
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Idea 2: reach the cycle twice

X0 X0 X0

M = [} M = [B12"||[1] M = (81118

o My = [B12"*+¢||[1]]|[81""
o My = [B1¥"||[1]]|[B]"*

reach the same state with constant probability.

Still no state recovery.
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Idea 2: reach the cycle twice

X0 X0 X0

on/2 on/2 on/2 on/2

M = [6] M =[] 1I[1] M =[] [[[11][8]

o My =[G |[1]]|[8]>"
o My = [B1¥"||[1]]|[B]"*

reach the same state with constant probability.

Still no state recovery. Solution: use the root of the main tree «.
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|dea 3: use the root of the giant tree

o Offline Step.
Find the cycle length 1 of the main component of f3 and the root of
the main tree a.
Cost: O(2"/?) applications of h.

@ Online Step.
Find the smallest z that yields a collision between

o MAC([BTII[1IIP""+)
o MAC([BI+[|[1I1I[B1").

using binary search.
Cost: O(2"/2 . n) applications of h.

WCP, the state after [§]* is a.
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@ Generic attack against AEAD modes
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Authenticated Encryption

%%

Unsafe channel
Alice Bob

A cryptographic scheme providing Authenticated Encryption ensures
both the privacy and integrity of communications.
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Authenticated Encryption

%%

Unsafe channel
Alice Bob

A cryptographic scheme providing Authenticated Encryption ensures
both the privacy and integrity of communications.

@ Privacy: The message can only be read by Alice and Bob.

@ Integrity: If the message is modified in the unsafe communication channel,
Bob will know.
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Authenticated Encryption with Associated Data (AEAD)

%%

Unsafe channel
Alice Bob

A cryptographic scheme providing Authenticated Encryption ensures
both the privacy and integrity of communications.

@ Privacy: The message can only be read by Alice and Bob.

@ Integrity: If the message is modified in the unsafe communication channel,
Bob will know.

Associated data : Public data sent alongside the message and whose integrity is
also guaranteed.
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Authenticated Encryption with Associated Data (AEAD)

Alice Bob
K, N, M, A K
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Authenticated Encryption with Associated Data (AEAD)

Alice Bob
K, N, M, A K
(C, T) = Enc(K,N, M, A)
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Authenticated Encryption with Associated Data (AEAD)

— (MACT) —M—

Alice Bob
K, N, M, A K
(C, T) = Enc(K,N, M, A)
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Authenticated Encryption with Associated Data (AEAD)

—— (MACT) —M—

Alice Bob
K, N, M, A K
(C, T) = Enc(K,N,M,A) if Verif(K,N,A,C, T)

return M = Dec(K, N, C, A)

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag
verification succeeds.
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Authenticated Encryption with Associated Data (AEAD)

- > (NACGT) —

Alice Bob
K, N, M, A K
(C,T) = Enc(K,N,M,A) if Verif(K,N,A,C, T)

return M = Dec(K, N, C, A)

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag
verification succeeds.

It is assumed that: - the adversary is nonce-respecting
- there is no release of unverified plaintext
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Duplex-based AEAD modes

Authenticated Encryption with Associated Data

@ Either block-cipher based: (tweakable) block cipher + mode

@ Or permutation-based: public permutation + keyed mode
Ex: X0ooDYAK = X00D00[12] + Cyclist [DHPVAVK20]

Duplex-based modes of operation

@ Permutation-based modes introduced by Bertoni, Daemen, Peeters, Van
Assche [BDPVAL1]

@ An adaptation to the AEAD context of the Sponge construction
[BDPVAO7]

Ex: SPONGEWRAP [BDPVAL1], MonkeyWrap (KETJE) [BDPVAVK14], etc.
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Duplex-based AEAD modes [BDPVALI]

A Mo CO Ml C1 Ml—l Cl—l T
fl\ M 'S
. .
(K,N) - P Ffinal
—> >
| - [
initial phase plaintext processing final phase

@ Permutation P operates on a state of length b = r + ¢ bits, where r is the
rate and c the capacity. (Think of ¢ as n!)

@ First r bits : the outer state
@ Next c bits : the inner state
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Duplex-based AEAD modes [BDPVALI]

A Mo CO Ml C1 Ml—l Cl—l T
fl\ M 'S
> =
(K,N) - P Ffinal
— >
| - [
initial phase plaintext processing final phase

@ Permutation P operates on a state of length b = r + ¢ bits, where r is the

rate and c the capacity. Ex: XOODYAK
@ First r bits : the outer state r = 192

@ Next c bits : the inner state c =192
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Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification

succeeds
Encryption
A MG M. G Mi—1 G T
slndlp A1
D D
(K, N) —|Finit P P| Ffinal
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Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification
succeeds

Decryption/verification

?
A My G My G Mi—1 G Tr=T
(K, N) —|Fini¢ P P Ffinal
—- X0 |— X1 > - X|—1—»
N / / -/
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Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification
succeeds

Decryption/verification

?
A M GG M G Mi_1C—1 r=T
(K, N) = Fini¢ P P Ffinal
—- X0 |—> X1 > - X|—1—|
-/ / / (N

Guessing x;—1 allows to build a forgery!
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Forgery attack on duplex-based modes [GHKR23]

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification
succeeds

Total time complexity of an attack

T =0e+tog+qp+ textra—op

where
oe is the number of online calls to P caused by encryption queries
04 is the number of online calls to P caused by forgery attempts

gp is the number of offline queries to P or P!
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Assuming a sufficiently large key/tag length:

T 2% min (237 (2;2) /e
N - |
e, Lo | -zc
[BDPVALL] [JLM14] [JLM14]
[JLMSY18] [JLMSY18]
\ J
~—

_____ ) gap

. known attacks

o4 is the number of online calls to P caused by forgery attempts
« is a small constant
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Assuming a sufficiently large key/tag length:

T 23 min (2%,5—:’) 2t 2 /e
................. e
_________________ ]
[BDPVA11] [JLM14] Our work [JLM14]
[JLMSY18] [JLMSY18]
gap

I proven security

- known attacks

04 is the number of online calls to P caused by forgery attempts
« is a small constant
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Main observation

Decrypting the ciphertext/tag pair (C = Gy || ---||Ci—1; T)
?
A Mo Co Ml Cl M/—l Cl—l r=T
(K, N) —=|Finit P P Frinal
—> X0—>| [—>X1— | - - X|—1—»
— —/ —/ —
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Main observation

Decrypting the ciphertext/tag pair (C =Gy || ---||Ci=1; T)
A Co G lel T
A Lﬂ L/\ L/ﬁ
(K, N) = Finit P P Ffinal
—>- X0 [—> X1 — - X|—1—
— % % —/
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Main observation

Decrypting the long ciphertext/tag pair (8¢ = B||---||15; T)

A 8 8 ‘ 8 T

(K, N) = |Finit Finar

— X0 — X1 PR Xp—1
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Main observation

Decrypting the long ciphertext/tag pair (8¢ = B||---||15; T)
‘
A B B B T

(K, N) = |Finit Finar

— X0 — X1 PR Xp—1

The tag verification iterates the function f3 : F§ — [F§

B

Xi = Xi+1
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Main observation

Decrypting the long ciphertext/tag pair (8¢ = B||---||15; T)
‘
A B B B T

(K, N) = |Finit Finar

— X0 — X1 PR Xp—1

The tag verification iterates the function f3 : F§ — [F§

B

@ For a random (3, we expect f3 to behave as a
random function drawn in Foc.

@ For each nonce, we expect xp to behave as a

X X1 random point drawn in the graph of f3.
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Reminder: graph of a random function f in §oc

o

Average. ..
@ Size of the largest component: 2¢ x 0.76. [FO89]
@ Cycle/tail length of a random point: 2%/7/8
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Reminder: graph of a random function f in §»-

The probability that a random function has a component
@ of cycle length at most < 23~% — its cycle is exceptionally small:
@ of size at least > 2¢ x s — this component is reasonably large;

2(1-5s) v [DeLaurentis87]

Ps,y =
s

Ex: proba for s = 65% and v = § (cycle of length < 25): 0.6 x 274
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Core idea of our forgery attack

Graph of Fa

(K7 N) _VFinit Ffinal

— X0 — X1 P Xp—1
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Core idea of our forgery attack

Graph of Fa
X0

A 8 8 T

B
(K7 N) _VFinit Ffinal
— X0 — X1 P Xp—1
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Graph of Fa

(K7 N) _VFinit Ffinal

— X0 — X1 P Xp—1
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Core idea of our forgery attack

Graph of Fa

Xe—1

A B

B B r
(K7 N) _>Finit P P Ffinal
— X0 — X1 e X¢—1
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Core idea of our forgery attack

Graph of Fg

X0

X1
X2

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...
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Core idea of our forgery attack

Graph of Fg
Xo

X1
X2

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...

— Since the component is large, xo belongs to it with good probability (a 0.65)
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Core idea of our forgery attack

Graph of Fg
Xo

X1
X2

Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...
— Since the component is large, xo belongs to it with good probability (a 0.65)

— If so, if £ is ‘large enough’ (say ¢ =~ 2%), X¢—1 is in the cycle with good probability
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Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...

— Since the component is large, xo belongs to it with good probability (a 0.65)
— If so, if £ is ‘large enough’ (say ¢ =~ 2%), X¢—1 is in the cycle with good probability

— If so, there are at most 24 possible values for x,_; i.e. at most 2% possible tags
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Xe—1

If one finds 3 s.t. fz has a reasonably large component (say > 0.65 x 2¢) with
an exceptionnally small cycle (say < 2%)...

— Since the component is large, xo belongs to it with good probability (a 0.65)
— If so, if £ is ‘large enough’ (say ¢ =~ 2%), X¢—1 is in the cycle with good probability

— If so, there are at most 24 possible values for x,_; i.e. at most 2% possible tags

Resulting forgery attack: try the < 2% possible values for T. J
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Core idea of our forgery attack

Precomputation phase
Find 3 s.t. fg has a large component (> 0.65 x 2¢) with an key
exceptionnally small cycle (< 2%), recover this cycle. independant

Online phase
Submit (N, A, C = S||---||8, T) queries to the decryption oracle where:
———

14

@ N is randomly sampled
@ A is set to the empty string
@ /is 'big enough’ (= 2%)

o T = Pgnat(Bl] x ), for x in the small cycle

Generic attacks based on functional graphs 34 /40



Simplified complexity analysis (precomputation phase)

Precomputation phase: Find § s.t. f3 has a large component
(> 0.65 x 2°) with an exceptionnally small cycle (< 2§), recover this
cycle.

Complexity analysis:

e Drawing about 1/ps, ~ 2% random B's

@ For each 3, investigating Fg costs ~ 23 per 3 thanks to Floyd's
algorithm.

The total complexity is ~ 0% applications of P. J
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Simplified complexity analysis (precomputation phase)

Precomputation phase: Find § s.t. f3 has a large component
(> 0.65 x 2°) with an exceptionnally small cycle (< 2§), recover this
cycle.

Complexity analysis:

e Drawing about 1/ps, ~ 2% random B's

@ For each 3, investigating Fg costs ~ 23 per 3 thanks to Floyd's
algorithm.

The total complexity is ~ 0% applications of P. J

Note: the algorithm includes a test that the component is likely to be
large enough.
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Simplified complexity analysis (online phase)

Online phase. Submit (N, A, C = j||---|[B, T) queries to the decryption
—_——

¢
oracle where T = Ffna (B]]X), x in the cycle.
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Online phase. Submit (N, A, C = j||---|[B, T) queries to the decryption
¢
oracle where T = Ffna (B]]X), x in the cycle.

Complexity analysis:
@ xp belongs to the desired component with probability s = 65%

@ For x;_1 to belong to the cycle with good probability, we set
(=3x23

e We try at most 23 values for T (at most the length of the cycle).

The total complexity is ~ 2% applications of P. J
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Simplified complexity analysis (online phase)

Online phase. Submit (N, A, C = j||---|[B, T) queries to the decryption
¢
oracle where T = Ffna (B]]X), x in the cycle.

Complexity analysis:
@ xp belongs to the desired component with probability s = 65%

@ For x;_1 to belong to the cycle with good probability, we set
(=3x23

e We try at most 23 values for T (at most the length of the cycle).

The total complexity is ~ 2% applications of P. J

Note: At the cost of a more expensive prec. phase, the complexity of this
step can be brought close(r) to 2%.
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Small scale experiments

@ Our attack is somewhat heuristic based.

— Ex: corroborate that the fz behave as random functions in practice.

@ We implemented experiments with X00D0OO[12] as P.

@ All our practical results match our heuristic-based results.

— Ex: the average tail length for a random fg matches the average tail length for
a random permutation.

@ We also implemented the precomputation algorithm.

— We found some valid 3 values for ¢ up to 40.
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Summary of our results

Our attack
@ has total time complexity < 21 x 2%,
@ a probability of success > 95%;

@ can be transformed into a key recovery at a negligible extra cost if P,z is
reversible (how: using the plaintext);

@ is applicable to the modes of Norx v2, KETJE, KNOT and KEYAK;

@ breaks the 184-bit security claim made by the designers of XOODYAK with
an attack of complexity 2142;

@ +# attack on HMAC that has complexity ~ 2"/2: for a given C, we cannot ask
an oracle to provide a valid T.
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Preventing the attack

Two main features frustrate our cryptanalysis:

e Key-dependent final phase. (ASCON, NORX v3)

— a correct guess on xg_1 cannot be transformed into a forgery (still a state
recovery)

e No outer state overwriting. (Beetle, SPARKLE)

— the decryption of S]] ---||8 does not correspond to the iteration of a function
¢
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Thank you for your attention :)

Any questions?
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