Generic attacks based on functional graphs

Rachelle Heim Boissier

Université de Versailles Saint-Quentin-en-Yvelines

Séminaire de Cryptographie de Rennes

This talk is about:

- Symmetric cryptanalysis
- Using random function graphs statistics in generic attacks ...
- ... against a variety of **iterated** constructions:
 - Hash functions [Floyd]
 - Message authenticated codes (MAC) modes [LPW13]
 - Authenticated encryption (AE) modes [GHKR23]

Random function statistics

- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AEAD modes

Definition:

 \mathscr{F}_N is the set of functions which map a finite set of size $N \in \mathbb{N}^*$ to itself.

Our main focus: the graph of f (randomly drawn) in \mathscr{F}_N

Functional graph

The graph of f, denoted by G(f), is a **directed graph** such that a vertex goes from node i to node j if and only if f(i) = j.

Functional graph

The graph of f, denoted by G(f), is a **directed graph** such that a vertex goes from node i to node j if and only if f(i) = j.

$$f : \mathbb{F}_{2}^{3} \longrightarrow \mathbb{F}_{2}^{3}$$

$$\begin{cases} 0 & \longmapsto 2 \\ 1 & \longmapsto 1 \\ 2 & \longmapsto 3 \\ 3 & \longmapsto 5 \\ 4 & \longmapsto 2 \\ 5 & \longmapsto 7 \\ 6 & \longmapsto 1 \\ 7 & \longmapsto 3 \end{cases}$$

• The graph of *f* can be seen as a set of **connected components**.

- The graph of *f* can be seen as a set of **connected components**.
- Each connected component has a unique cycle.

- The graph of *f* can be seen as a set of **connected components**.
- Each connected component has a unique cycle.
- Each cyclic node is the root of a tree.

For any $x_0 \in G(f)$

For any $x_0 \in G(f)$

•
$$(x_i \coloneqq f^i(x_0))_{i \in \mathbb{N}}$$

For any $x_0 \in G(f)$

- $(x_i := f^i(x_0))_{i \in \mathbb{N}}$ is eventually periodic.
- (x_i)_{i∈ℕ} graphically corresponds to a path linked to a cycle

For any $x_0 \in G(f)$

- $(x_i := f^i(x_0))_{i \in \mathbb{N}}$ is eventually periodic.
- (x_i)_{i∈ℕ} graphically corresponds to a path linked to a cycle

We define

• Tail length.

 $\lambda(x_0)$ is the smallest *i* s.t. x_i is in the cycle.

• Cycle length.

 $\mu(x_0)$ number of nodes in the cycle.

For f randomly drawn in \mathfrak{F}_N :

- Expected size of f's largest component : 0.76N
- Expected size of f's largest tree : 0.5N
- For *x* a random node:
 - Expected value of its tail length $\lambda(x)$: $\sqrt{\pi N/8}$
 - Expected value of its cycle length $\mu(x)$: $\sqrt{\pi N/8}$

For f randomly drawn in \mathfrak{F}_N :

- Expected size of f's largest component : 0.76N
- Expected size of f's largest tree : 0.5N
- For x a random node:
 - Expected value of its tail length $\lambda(x)$: $\sqrt{\pi N/8}$
 - Expected value of its cycle length $\mu(x)$: $\sqrt{\pi N/8}$

Many more statistics are known and used in generic attacks. [DeLaurentis88] [FO89] [Harris60] ... Random function statistics

2 Memory-negligible collision search

3 State recovery attack against HMAC

4 Generic attack against AEAD modes

Definition. A cryptographic hash function is a function $H : \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_2^d$, it is difficult to find $m \in \mathbb{F}_2^*$ s.t. H(m) = h.
- Second preimage resistance. Given $m \in \mathbb{F}_2^*$, it is difficult to find $m' \neq m$ s.t. H(m') = H(m).
- Collision resistance. It is difficult to find (m, m'), $m \neq m'$ such that H(m) = H(m').

Definition. A cryptographic hash function is a function $H : \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_2^d$, it is difficult to find $m \in \mathbb{F}_2^*$ s.t. H(m) = h.
- Second preimage resistance. Given $m \in \mathbb{F}_2^*$, it is difficult to find $m' \neq m$ s.t. H(m') = H(m).
- Collision resistance. It is difficult to find (m, m'), $m \neq m'$ such that H(m) = H(m').

Generic collision attack: Compute H(m) for $O(2^{n/2})$ messages *m*, store them in a list, sort it. WHP, you find a collision (Birthday paradox).

Definition. A cryptographic hash function is a function $H : \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_2^d$, it is difficult to find $m \in \mathbb{F}_2^*$ s.t. H(m) = h.
- Second preimage resistance. Given $m \in \mathbb{F}_2^*$, it is difficult to find $m' \neq m$ s.t. H(m') = H(m).
- Collision resistance. It is difficult to find (m, m'), $m \neq m'$ such that H(m) = H(m').

Generic collision attack: Compute H(m) for $O(2^{n/2})$ messages *m*, store them in a list, sort it. WHP, you find a collision (Birthday paradox).

Problem: Memory complexity is high.

Definition. A cryptographic hash function is a function $H : \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that the following properties are verified

- Preimage resistance. Given $h \in \mathbb{F}_2^d$, it is difficult to find $m \in \mathbb{F}_2^*$ s.t. H(m) = h.
- Second preimage resistance. Given $m \in \mathbb{F}_2^*$, it is difficult to find $m' \neq m$ s.t. H(m') = H(m).
- Collision resistance. It is difficult to find (m, m'), $m \neq m'$ such that H(m) = H(m').

Generic collision attack: Compute H(m) for $O(2^{n/2})$ messages *m*, store them in a list, sort it. WHP, you find a collision (Birthday paradox).

Problem: Memory complexity is high.

Solution: a generic memory-negligible collision attack using functional graphs.

A memory-negligible collision attack on H

f

Let $f \in \mathfrak{F}_{2^n}$ be defined as

Step 1. Floyd's cycle finding algorithm allows to recover a node x_c in a cycle of f's graph

• in time $O(2^{n/2})$;

• using a **negligible amount of memory**.

Step 2. Using x_c , it is easy to

- $\bullet\,$ recover the cycle's length $\mu\,$
- find a collision on f, and thus on H,

in time $O(2^{n/2})$ and with negligible memory.

parameters : $f \in \mathfrak{F}_{2^n}$ 1: $x_0 \leftarrow_R \mathbb{F}_2^n$ 2: turtle, hare $\leftarrow x_0, x_0$ 3: for i = 1 to $2^n - 1$ do 4: turtle $\leftarrow f(turtle)$ 5: hare $\leftarrow f^2(hare)$ 6: if turtle = hare then 7: return turtle 8: end if 9: end for

 λ is the smallest integer j such that $x_j = f^j(x_0)$ is in the cycle.

 λ is the smallest integer j such that $x_j = f^j(x_0)$ is in the cycle.

 λ is the smallest integer j such that $x_j = f^j(x_0)$ is in the cycle.

Let $d_{\lambda} = dist(x_{\lambda}, x_{2\lambda})$.

 λ is the smallest integer j such that $x_j = f^j(x_0)$ is in the cycle.

Let $d_{\lambda} = dist(x_{\lambda}, x_{2\lambda})$.

Then

$$dist(f(x_{\lambda}), f^{2}(x_{2\lambda})) = d_{\lambda} + 1 \mod \mu$$
.

 λ is the smallest integer j such that $x_j = f^j(x_0)$ is in the cycle.

Let $d_{\lambda} = dist(x_{\lambda}, x_{2\lambda})$.

Then

 $dist(x_{\lambda+k}, x_{2\lambda+2k}) = d_{\lambda} + k \mod \mu$.

 λ is the smallest integer j such that $x_j = f^j(x_0)$ is in the cycle.

Let $d_{\lambda} = dist(x_{\lambda}, x_{2\lambda})$.

Then

$$dist(x_{\lambda+k}, x_{2\lambda+2k}) = d_{\lambda} + k \mod \mu$$
.

Thus, after at most μ tries, the algorithm finds *i* such that $x_i = x_{2i}$, and x_i is in the cycle.

We need

- at most λ for loops to reach the cycle
- at most μ for loops to detect it

Functional graphs statistics.

f behaves like a RF, x_0 is randomly drawn. We thus expect

•
$$\lambda = O(2^{n/2})$$

•
$$\mu = O(2^{n/2})$$

parameters : $f \in \mathfrak{F}_{2^n}$ 1: $x_0 \leftarrow_R \mathbb{F}_2^n$ 2: turtle, hare $\leftarrow x_0, x_0$ 3: for i = 1 to $2^n - 1$ do4: turtle $\leftarrow f(turtle)$ 5: hare $\leftarrow f^2(hare)$ 6: if turtle = hare then7: return turtle8: end if9: end for

We need

- at most λ for loops to reach the cycle
- at most μ for loops to detect it

Functional graphs statistics.

f behaves like a RF, x_0 is randomly drawn. We thus expect

•
$$\lambda = O(2^{n/2})$$

•
$$\mu = O(2^{n/2})$$

parameters : $f \in \mathfrak{F}_{2^n}$ 1: $x_0 \leftarrow_R \mathbb{F}_2^n$ 2: turtle, $hare \leftarrow x_0, x_0$ 3: for i = 1 to $2^n - 1$ do 4: $turtle \leftarrow f(turtle)$ 5: $hare \leftarrow f^2(hare)$ 6: if turtle = hare then 7: return turtle8: end if 9: end for

One can show that Floyd's time complexity is in $O(2^{n/2})$

We need

- at most λ for loops to reach the cycle
- at most μ for loops to detect it

Functional graphs statistics.

f behaves like a RF, x_0 is randomly drawn. We thus expect

•
$$\lambda = O(2^{n/2})$$

•
$$\mu = O(2^{n/2})$$

parameters : $f \in \mathfrak{F}_{2^n}$ 1: $x_0 \leftarrow_R \mathbb{F}_2^n$ 2: turtle, hare $\leftarrow x_0, x_0$ 3: for i = 1 to $2^n - 1$ do 4: turtle $\leftarrow f(turtle)$ 5: hare $\leftarrow f^2(hare)$ 6: if turtle = hare then 7: return turtle 8: end if 9: end for

One can show that Floyd's time complexity is in $O(2^{n/2})$

... and it is straightforward that the memory complexity is negligible.

- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AEAD modes

Definition. A **Message Authenticated Code algorithm** is a **symmetric algorithm** that takes as input a **secret key** k and an arbitrary length message m to produce a fixed length **tag** that guarantees the **integrity** of the message.

Generation and verification procedure. Alice and Bob share a secret *k*.

- Alice (sender)
 - Using the secret and a MAC algorithm *MAC*, Alice computes a tag $T = MAC_k(M)$.
 - Alice sends (M, T) through an unsafe communication channel.
- Ø Bob (receiver)
 - Bob receives (M', T').
 - Bob computes MAC_k(M'). If it is equal to T', then he concludes that M' is the message sent by Alice. Otherwise, he discards (M', T').

Hash-based MACs

Hash functions can be used to build MACs.

- A good hash function behaves like a random oracle.
- It is easy to build a secure MAC with a RO.
- With a real hash function, it is essential to study generic attacks.
- There is a **great number of papers** which analyse the generic security of HMACs.

In this presentation. We present a 2013 **state recovery attack** by Leurent, Peyrin and Wang on the family of hash-based MACs with the following structure (e.g. HMAC [BCK96]).

State-recovery attack on HMAC [LPW13]

State-recovery attack on HMAC [LPW13]

• Let β be a random fixed block, and consider the message $M = \underbrace{\beta || \cdots || \beta}_{\ell}$.

State-recovery attack on HMAC [LPW13]

• Let β be a random fixed block, and consider the message $M = \underbrace{\beta || \cdots || \beta}_{\ell}$. • We expect

$$egin{array}{rcl} f_eta & : & \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2^n \ & x & \longmapsto & h(eta||x) \end{array}$$

to behave as a random function.
State-recovery attack on HMAC [LPW13]

• Let β be a random fixed block, and consider the message $M = \underbrace{\beta || \cdots || \beta}_{\ell}$. • We expect

$$egin{array}{rcl} f_eta & : & \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2^n \ & x & \longmapsto & h(eta||x) \end{array}$$

to behave as a random function.

• Since the main component has size $0.76 \cdot 2^n$, $x_0 = I_k$ is in it WHP.

Idea 1: use two messages which reach the same state

Two issues: Message size + the state is not recovered

Idea 2: reach the cycle twice

- $M_1 = [\beta]^{2^{n/2} + \mu} ||[1]||[\beta]^{2^{n/2}}$
- $M_2 = [\beta]^{2^{n/2}} ||[1]||[\beta]^{2^{n/2} + \mu}$

reach the same state with constant probability.

Still no state recovery.

Idea 2: reach the cycle twice

- $M_1 = [\beta]^{2^{n/2} + \mu} ||[1]||[\beta]^{2^{n/2}}$
- $M_2 = [\beta]^{2^{n/2}} ||[1]||[\beta]^{2^{n/2} + \mu}$

reach the same state with constant probability.

Still no state recovery. Solution: use the root of the main tree α .

• Offline Step.

Find the cycle length μ of the main component of f_{β} and the root of the main tree α .

Cost: $O(2^{n/2})$ applications of h.

• Online Step.

Find the smallest z that yields a collision between

- $MAC([\beta]^{z}||[1]||[\beta]^{2^{n/2}+\mu})$
- $MAC([\beta]^{\mathbf{z}+\mu}||[1]||[\beta]^{2^{n/2}}).$

using binary search.

Cost: $O(2^{n/2} \cdot n)$ applications of h.

WCP, the state after $[\beta]^z$ is α .

- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- Generic attack against AEAD modes

Authenticated Encryption

A cryptographic scheme providing Authenticated Encryption ensures both the privacy and integrity of communications.

Authenticated Encryption

A cryptographic scheme providing **Authenticated Encryption** ensures both the **privacy** and **integrity** of communications.

- **Privacy**: The message can only be read by Alice and Bob.
- Integrity: If the message is modified in the unsafe communication channel, Bob will know.

A cryptographic scheme providing **Authenticated Encryption** ensures both the **privacy** and **integrity** of communications.

- **Privacy**: The message can only be read by Alice and Bob.
- Integrity: If the message is modified in the unsafe communication channel, Bob will know.

Associated data : *Public data* sent alongside the message and whose integrity is also guaranteed.

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds.

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds.

It is assumed that: - the adversary is **nonce-respecting** - there is **no release of unverified plaintext**

- Either **block-cipher based**: (tweakable) block cipher + mode
- Or permutation-based: public permutation + keyed mode Ex: XOODYAK = XOODOO[12] + Cyclist [DHPVAVK20]

Duplex-based modes of operation

- Permutation-based modes introduced by Bertoni, Daemen, Peeters, Van Assche [BDPVA11]
- An adaptation to the AEAD context of the **Sponge construction** [BDPVA07]
 - EX: SPONGEWRAP [BDPVA11], MonkeyWrap (KETJE) [BDPVAVK14], etc.

Duplex-based AEAD modes [BDPVA11]

- Permutation P operates on a state of length b = r + c bits, where r is the rate and c the capacity. (Think of c as n!)
- First *r* bits : the **outer state**
- Next c bits : the inner state

Duplex-based AEAD modes [BDPVA11]

- Permutation *P* operates on a state of length b = r + c bits, where *r* is the **rate** and *c* the **capacity**.
- First *r* bits : the **outer state**
- Next c bits : the inner state

 $\frac{\text{Ex:}}{r = 192}$ c = 192

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Encryption

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Decryption/verification

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Decryption/verification

Guessing x_{l-1} allows to build a forgery!

Forgery attack: find a decryption query (N, A, C, T) s.t. the tag verification succeeds

Total time complexity of an attack

$$\mathscr{T} = \sigma_e + \sigma_d + q_P + t_{extra-op}$$

where

 σ_e is the number of online calls to *P* caused by encryption queries σ_d is the number of online calls to *P* caused by forgery attempts q_P is the number of offline queries to *P* or P^{-1}

Our motivation

Assuming a sufficiently large key/tag length:

 $\sigma_{\rm d}$ is the number of online calls to P caused by forgery attempts α is a small constant

Our motivation

Disclaimer this is (extremely) simplified

Assuming a sufficiently large key/tag length:

 σ_d is the number of online calls to P caused by forgery attempts α is a small constant

Decrypting the ciphertext/tag pair ($C = C_0 || \cdots || C_{l-1}; T$)

Decrypting the ciphertext/tag pair ($C = C_0 \parallel \cdots \parallel C_{l-1}; T$)

Decrypting the long ciphertext/tag pair ($\beta_{\ell} = \underbrace{\beta || \cdots || \beta}_{\ell}$; T)

Decrypting the long ciphertext/tag pair ($\beta_{\ell} = \underbrace{\beta||\cdots||\beta}_{\mathcal{F}}$; T)

The tag verification iterates the function $f_{\beta}: \mathbb{F}_2^c \to \mathbb{F}_2^c$

Decrypting the long ciphertext/tag pair ($\beta_{\ell} = \beta || \cdots || \beta; T$)

The tag verification iterates the function $f_{\beta}: \mathbb{F}_2^c \to \mathbb{F}_2^c$

- For a random β, we expect f_β to behave as a random function drawn in F_{2^c}.
- For each nonce, we expect x_0 to behave as a random point drawn in the graph of f_β .

Reminder: graph of a random function f in \mathfrak{F}_{2^c}

Average...

- Size of the largest component: $2^c \times 0.76$.
- Cycle/tail length of a random point: $2^{\frac{c}{2}}\sqrt{\pi/8}$

[FO89]

Reminder: graph of a random function f in \mathfrak{F}_{2^c}

The probability that a random function has a component

- of cycle length at most $\leq 2^{\frac{c}{2}-\nu} \rightarrow$ its cycle is **exceptionally small**:
- of size at least $\geq 2^c \times s \rightarrow$ this component is reasonably large;

$$p_{s,\nu} pprox \sqrt{rac{2(1-s)}{\pi s}} 2^{-
u}$$
 [DeLaurentis87]

Ex: proba for s=65% and $\nu=\frac{c}{4}$ (cycle of length $\leq 2^{\frac{c}{4}}$): $0.6 imes 2^{-\frac{c}{4}}$

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x_0 belongs to it with good probability (≈ 0.65)
Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x₀ belongs to it with good probability (≈ 0.65)

 \rightarrow If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability

Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x₀ belongs to it with good probability (≈ 0.65)

 \rightarrow If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability \rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ *i.e.* at most $2^{\frac{c}{4}}$ possible tags

Core idea of our forgery attack

If one finds β s.t. f_{β} has a reasonably large component (say $\geq 0.65 \times 2^{c}$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

 \rightarrow Since the component is large, x_0 belongs to it with good probability (≈ 0.65)

 \rightarrow If so, if ℓ is 'large enough' (say $\ell \approx 2^{\frac{c}{2}}$), $x_{\ell-1}$ is in the cycle with good probability

 \rightarrow If so, there are at most $2^{\frac{c}{4}}$ possible values for $x_{\ell-1}$ i.e. at most $2^{\frac{c}{4}}$ possible tags

Resulting forgery attack: try the $\leq 2^{\frac{c}{4}}$ possible values for T.

Precomputation phase

Find β s.t. f_{β} has a large component ($\geq 0.65 \times 2^c$) with an exceptionnally small cycle ($\leq 2^{\frac{c}{4}}$), recover this cycle.

Online phase

Submit $(N, A, C = \underbrace{\beta || \cdots || \beta}_{\ell}, T)$ queries to the decryption oracle where:

- N is randomly sampled
- A is set to the empty string
- ℓ is 'big enough' ($\approx 2^{\frac{c}{2}}$)
- $T = P_{final}(\beta || x)$, for x in the small cycle

Precomputation phase: Find β s.t. f_{β} has a large component $(\geq 0.65 \times 2^c)$ with an exceptionnally small cycle $(\leq 2^{\frac{c}{4}})$, recover this cycle.

Complexity analysis:

- Drawing about $1/p_{s,\nu} \approx 2^{\frac{c}{4}}$ random β 's
- For each β , investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Precomputation phase: Find β s.t. f_{β} has a large component $(\geq 0.65 \times 2^c)$ with an exceptionnally small cycle $(\leq 2^{\frac{c}{4}})$, recover this cycle.

Complexity analysis:

- Drawing about $1/p_{s,\nu} \approx 2^{\frac{c}{4}}$ random β 's
- For each β , investigating F_{β} costs $\approx 2^{\frac{c}{2}}$ per β thanks to Floyd's algorithm.

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Note: the algorithm includes a test that the component is likely to be large enough.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta || \cdots || \beta}_{\ell}, T)$ queries to the decryption oracle where $T = F_{final}(\beta || x)$, x in the cycle.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta || \cdots || \beta}_{\ell}, T)$ queries to the decryption oracle where $T = F_{final}(\beta || x)$, x in the cycle.

Complexity analysis:

- x_0 belongs to the desired component with probability s = 65%
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell = 3 \times 2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Simplified complexity analysis (online phase)

Online phase. Submit $(N, A, C = \underbrace{\beta || \cdots || \beta}_{\ell}, T)$ queries to the decryption oracle where $T = F_{final}(\beta || x)$, x in the cycle.

Complexity analysis:

- x_0 belongs to the desired component with probability s = 65%
- For $x_{\ell-1}$ to belong to the cycle with good probability, we set $\ell = 3 \times 2^{\frac{c}{2}}$
- We try at most $2^{\frac{c}{4}}$ values for T (at most the length of the cycle).

The total complexity is $\approx 2^{\frac{3c}{4}}$ applications of *P*.

Note: At the cost of a more expensive prec. phase, the complexity of this step can be brought close(r) to $2^{\frac{c}{2}}$.

• Our attack is somewhat heuristic based.

 \rightarrow Ex: corroborate that the f_{β} behave as random functions in practice.

• We implemented experiments with X00D00[12] as P.

• All our practical results match our heuristic-based results. \rightarrow Ex: the average tail length for a random f_{β} matches the average tail length for a random permutation.

• We also implemented the precomputation algorithm.

 \rightarrow We found some **valid** β **values** for *c* up to 40.

Our attack

- has total time complexity $\leq 21 \times 2^{\frac{3c}{4}}$;
- a probability of success $\ge 95\%$;
- can be transformed into a key recovery at a negligible extra cost if P_{init} is reversible (how: using the plaintext);
- is applicable to the modes of Norx v2, KETJE, KNOT and KEYAK;
- breaks the 184-bit security claim made by the designers of XOODYAK with an attack of complexity 2¹⁴⁸;
- \neq attack on HMAC that has complexity $\approx 2^{n/2}$: for a given *C*, we cannot ask an oracle to provide a valid *T*.

Two main features frustrate our cryptanalysis:

• Key-dependent final phase. (ASCON, NORX v3)

ightarrow a correct guess on $x_{\ell-1}$ cannot be transformed into a forgery (still a state recovery)

• No outer state overwriting. (Beetle, SPARKLE)

 \rightarrow the decryption of $\underbrace{\beta||\cdots||\beta}_{\ell}$ does not correspond to the iteration of a function

Thank you for your attention :)

Any questions?