uvsQ®

A generic algorithm for efficient key
recovery in differential attacks — and
its associated tool

Christina Boura, Nicolas David, Patrick Derbez, Rachelle Heim Boissier, Maria
Naya-Plasencia

UVSQ), Inria, University of Rennes

Eurocrypt 2024, Zurich, Switzerland
1/21

Differential cryptanalysis

* Cryptanalysis technique introduced by Biham and Shamir in 1990.

* Based on the existence of a high-probability differential (6,06 ,./).

-———=- rrounds —----— -

—| R— R

)

m

T
4
I
|
v

x+{5//) — R — R

R

-~ R'(z)

4

| <
| ()ozn‘
v

—> Rr(x)+ (jt)ul

* If the probability of (§;,,80us) is (much) higher than max(2™",27%), where n is the
block size, x the key length, then we have a differential distinguisher.

2/21

Key recovery attack

A differential distinguisher can be used to mount a key recovery attack.

This technique broke many block ciphers of the 70s-80s, e.g. DES, FEAL, etc.

New primitives should come with arguments of resistance by design against this
technique.

Most of the arguments used rely on showing that differential distinguishers of high
probability do not exist after a certain number of rounds.

Not always enough: A deep understanding of how the key recovery works is necessary
to claim resistance against these attacks.

3/21

uvsQe

The key recovery problem

4/21

UV

sQm

Overview of the key recovery procedure

27111'71
______________ -
Dip Tin rounds Sin rs rounds Sout Tout rounds | Doys
B T e >
1 27P 1

First step: Construct 2P*%n pairs ((P,C), (P, C)) s.t. P+ P € Dj,.
e Use of structures of size 2%n — Data complexity: = 2P*1, Memory complexity: 2%n

5/21

UV

sQm

Overview of the key recovery procedure

27111'71
______________ -
Dip I'in rounds Sin rs rounds Sout Tout rounds | Doys
B T e >
1 27P 1

First step: Construct 2P*%n pairs ((P,C), (P, C)) s.t. P+ P € Dj,.
e Use of structures of size 2%n — Data complexity: = 2P*1, Memory complexity: 2%n

Second step: Discard pairs that are not in Dyy;.
e Number of pairs for the attack: N = 2P+din~(n=dou)

5/21

UV

sQm

Overview of the key recovery procedure

27111'71
______________ -
Dip I'in rounds Sin rs rounds Sout Tout rounds | Doys
B T e >
1 27P 1

First step: Construct 2P*%n pairs ((P,C), (P, C)) s.t. P+ P € Dj,.
e Use of structures of size 2%n — Data complexity: = 2P*1, Memory complexity: 2%n

Second step: Discard pairs that are not in Dyy;.
e Number of pairs for the attack: N = 2P+din~(n=dou)

Third step: Core key recovery

5/21

Core key recovery

Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet ((P,C), (P, C'), k) such that the (partial) key candidate k encrypts
(resp. decrypts) (P, P) (resp. (C,C')) to the input (resp. output) of the differential.

6/21

Core key recovery

Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet ((P,C), (P, C'), k) such that the (partial) key candidate k encrypts
(resp. decrypts) (P, P) (resp. (C,C')) to the input (resp. output) of the differential.
What is the complexity of this procedure?

e Upper bound: min(2¥, N-2-#1),

e Lower bound: N+ N-2-#1-din—dou

zlll_din_dout

where N- is the number of expected candidates.

6/21

Core key recovery

Determine the pairs for which there exists an associated key that leads to the differential.

A candidate is a triplet ((P,C), (P, C'), k) such that the (partial) key candidate k encrypts
(resp. decrypts) (P, P) (resp. (C,C')) to the input (resp. output) of the differential.

What is the complexity of this procedure?

e Upper bound: min(2¥, N-2-#1),

e Lower bound: N+ N-2-#1-din—dou

zlll_din_dout

where N- is the number of expected candidates.

A key recovery is efficient, if its complexity is as close as possible to the lower bound.

6/21

uvsQe

The key recovery problem

[18-round related-key differential distinguisher]

: r.»%/‘ - - = >
@ e e 88 93 93 88 B8 BB 93 B8 B8 B8 93 B3 &
(Ve hbh bhhh dhhs thbh bhnh bhhi bhoh b hi bih Aio biie hbb bhen dis bbb

Potentially too many active S-boxes and key guesses.

7/21

uvsQe

The key recovery problem

[1-round related-key differential dmtmg\usher]
X7 m ® s

¥R Q

o m@g mga s orn o ¢= m raaara: ¢¢§§ e ¢¢§§ . mmg@ rzamg ¢¢§¢
EE) () (W) (W) ()

§§ EENCNECENEN N

NN
b bonE bhed SHiE bhdh Gbdh Ghee bina bHid

w2830
X OO0 DUUE EPP COUE LEPE O
Our goal : Automatise the key recovery for SPN block ciphers with a bit-permutation as

linear layer and an (almost) linear key schedule.
7/21

Efficient key recovery

Solving an active S-box S

Determine the triplets (x,x,k) s. t. x+x € v, and S(x+ k) + S(xX' + k) € vy
Discard the other triplets.

Example: this active S-box has 28472 = 210 solutions.

Vout

8/21

Efficient key recovery

Solving an active S-box S

Determine the triplets (x,x,k) s. t. x+x € v, and S(x+ k) + S(xX' + k) € vy
Discard the other triplets.

Can be generalised to any subset of active S-boxes!

Example: this active S-box has 28472 = 210 solutions.

Vout

8/21

Efficient key recovery

Solving an active S-box S

Determine the triplets (x,x,k) s. t. x+x € v, and S(x+ k) + S(xX' + k) € vy
Discard the other triplets.

Can be generalised to any subset of active S-boxes!

Example: this active S-box has 28472 = 210 solutions.

Vout

Goal: Reduce the number of triplets as early as possible whilst maximizing the number of
determined key bits in the involved key material % .

8/21

uvsQm

An algorithm for efficient key recovery

9/21

UVS

Modeling the key recovery as a graph

;b"‘%qn ¢né‘€%¢__¢£éa¢ S5

R R

10/21

Modeling the key recovery as a graph

Ko
K

'
[Sis

peE ooRE QEee Que
it %

o

eilieslt

% ®
12 L1
K, %)
3 1
i
H round distinguisher
[:] &
512 Sit
K)
5.3 2 5.1

C
Ko
6.3

0
[

[Sis

i kg

:

)

O

T

O
Lo
L0 Ferle

Key recovery:
partition of the nodes + associated order

10/21

Considering strategies

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

Parameters of a strategy Fx: @ @
e number of solutions A;

* online time complexity I . @ @ @ @

A strategy can be further refined with extra information: e.g. memory, offline time.

11/21

Considering strategies

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

Parameters of a strategy Fx: @ @
e number of solutions A;

* online time complexity I . @ @) @ @

A strategy can be further refined with extra information: e.g. memory, offline time.

11/21

Considering strategies

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

2

Parameters of a strategy Fx: @ @
e number of solutions A;

* online time complexity I . @ @) @ @

A strategy can be further refined with extra information: e.g. memory, offline time.

11/21

Considering strategies

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

2

Parameters of a strategy Fx: @ @
e number of solutions A;

* online time complexity J. 5 @ @ 1 @ @

A strategy can be further refined with extra information: e.g. memory, offline time.

11/21

Considering strategies

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

2

Parameters of a strategy Fx: @ @
e number of solutions A; !

* online time complexity J. 5 @ @ 1 @ @

A strategy can be further refined with extra information: e.g. memory, offline time.

11/21

Considering strategies

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

2

Parameters of a strategy Fx: @ @
e number of solutions A; !

* online time complexity I . 5 @ @) 5 @ @

A strategy can be further refined with extra information: e.g. memory, offline time.

11/21

Considering strategies

Strategy #x for a subgraph X

Procedure that allows to enumerate all the possible values that the S-boxes of X can take
under the differential constraints imposed by the distinguisher.

2

Parameters of a strategy Fx: @ @
e number of solutions A; !

* online time complexity I . 5 @ @) 5 @ @
A strategy can be further refined with extra information: e.g. memory, offline time.

Objective: Build an efficient strategy for the whole graph.

— Based on basic strategies, i.e. strategies for a single S-box.
11/21

Comparing two strategies

Compare two strategies #; and %2 for the same subgraph X

1. Choose the one with the best time complexity.

2. If same time complexity, choose the one with the best memory complexity.

Compare #; and #7 when Yc X

If the number of solutions and time complexity of #¢ are not higher than those of #Z,
then we can freely replace #Z by #4.

12/21

Merging two strategies

Let S and # two strategies for the graphs X and Y respectively.

* The number of solutions of #' = merge(#x, #y) only depends on XU Y:

Number of solutions of .#’

Sol(XuY) = Sol(X) + Sol(Y) — # bit-relations between the nodes of X and Y A log scale

Time and memory associated to .’

* T() =max(T(¥), T(#Y), Sol(XuU Y))
* M(¥") = max(M(Fx), M(Fy), min(Sol(Fx), Sol(Fy)))

13/21

A dynamic programming approach

* The online time complexity of merge(¥x, #y) only depends on the time complexities
of % and F.

* An optimal strategy for XUY can always be obtained by merging two optimal
strategies for X and Y.

* Use a bottom-up approach, merging first the strategies with the smallest time
complexity to reach a graph strategy with a minimal time complexity.

Dynamic programming approach

Ensure that, for any subgraph X, we only keep one optimal strategy to enumerate it.

14/21

uvsQ®

Sieving

Idea: Use the differential constraints to filter out pairs that cannot follow the differential,
regardless of the value of the key.

!/ !/ / /
(XS»X3;X2)X2yX1 ®X1,X0®XO) o

* Example:

Filter: 36/26 =208,

15/21

Sieving

Idea: Use the differential constraints to filter out pairs that cannot follow the differential,
regardless of the value of the key.

!/ !/ / /
(X3,X3,X2,X2,X1@Xl,Xo@XO) o

e Example:

Filter: 36/26 =208,

Pre-sieving
Apply a sieve on all S-boxes of the external rounds.
Advantage : The key recovery is performed on N’ < N pairs.

15/21

Precomputing partial solutions

Precompute the partial solutions to some subgraph.

* Impact on the memory complexity and the offline time of the attack.

* The optimal key recovery strategy depends on how much memory and offline time are
allowed.

16 /21

uvsQ®

Applications of our tool: KYRYDI

Sol:N +1.63
time: N +2.12

18/21

Application to the toy cipher

SB6[3] memory: 15.31
sol: 6.68 precc ion: 15.31

sol: N +0.68
time: N + 0.68

SB6[2]
sol: 6.83

SB5(1]
-> SB4[2] -> SB5[0] SB6[0] SB6[1]
sol: 17.51

sol: N +1.02
time: N +1.51

SBO[0] SBO[2] SB1[0]
sol: 12.31
SBO[1] SBO[3] SB1[2] SB2[0]
sol: 15.31
sol: N +1.63
time: N + 1.63

18/21

uvsQ®

Application to other ciphers

Start from an existing distinguisher that led to the best key recovery attack against the
target cipher.

* RECTANGLE: Extended by one round the previous best attack.
* PRESENT-80: Extended by two rounds the previous best differential attack.

* GIFT-64 and SPEEDY-7-192: Best key recovery strategy without additional
techniques.

19/21

Extensions and improvements

* Handle ciphers with more complex linear layers.
* Handle ciphers with non-linear key schedules.

* Incorporate tree-based key recovery techniques by exploiting the structure of the
involved S-boxes.

The best distinguisher does not always lead to the best key recovery!

Ultimate goal

Combine the tool with a distinguisher-search algorithm to find the best possible attacks.

20/21

uvsQ®

Other open problems

* Prove optimality.

* The tool works for (impossible) differential attacks:

— Apply a similar approach to other attacks.

21/21

Other open problems

UV

sQm

* Prove optimality.

* The tool works for (impossible) differential attacks:

— Apply a similar approach to other attacks.

Thanks for your attention!

Link to KYRYDI:
https://gitlab.inria.fr/capsule/kyrydi

21/21

	The key recovery problem
	An algorithm for efficient key recovery
	Applications of our tool: KYRYDI

