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Context: symmetric cryptography

‘Classical’ cryptanalysis families: differential, linear, integral, . . .

New designs must come with arguments of resistance to each family.

Difficulty to know which attack will be the most efficient.
→ Analysing a primitive is thus time-consuming, error-prone.

In competitions: many ad-hoc cryptanalysis.
→ Difficult to outline generic criteria.

A direction: Proposing generic and automatic cryptanalytic tools.
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Context: differential cryptanalysis

Introduced by Biham and Shamir in 1990.

One of the oldest and most famous cryptanalysis families

Yet, some primitives are still broken by differential cryptanalysis today.

Some aspects of differential cryptanalysis are still not well-understood.

The key recovery step is one of these aspects.

This talk/work: an attempt at providing some clarity.
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This talk

Key recovery attacks against block ciphers
. . . using differential cryptanalysis
. . . focusing on the key recovery step.
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Key recovery attacks against block ciphers

General structure of an iterated block cipher

K

Key schedule

K0

⊕M R
K1

⊕ . . .
Kr−1

⊕ R
Kr

⊕ C

Key recovery attacks

guess bits of K0

⊕ RM (r − 2)-round distinguisher R

guess bits of Kr

⊕ C
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Key recovery attacks

M
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Outline

1 Differential Cryptanalysis of Block Ciphers

2 Our Model of the Core Key Recovery Step

3 A Generic Algorithm for the Core Key Recovery Step

4 Applications
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Differential cryptanalysis

For a block cipher E , a differential is a pair of input/output differences (∆in,∆out).

The probability of (∆in,∆out) is the probability p that

EK (X ) + EK (X +∆in) = ∆out ,

for a key K and an X both chosen uniformly at random.

EKX Y

X +∆in

∆in

Y ′EK

∆out?

If p ≫ 2−n, where n is the block size, then we have a differential distinguisher on E .
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R rm
K (X ) + R rm

K (X +∆in) = ∆out ,

for a key K and an X both chosen uniformly at random.
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KX Y

X +∆in

∆in

Y ′R rm
K

∆out?

If p ≫ 2−n, where n is the block size, then we have a differential distinguisher on R rm .
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Differential key recovery attacks

A differential distinguisher can be used to mount a key recovery attack.

New primitives should come with arguments of resistance by design against this technique.

Most of the arguments used rely on showing that differential distinguishers of high probability
do not exist after a certain number of rounds.

Not always enough: A deep understanding of how the key recovery works is necessary to claim
resistance against these attacks.
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The example of SPEEDY

SPEEDY-7-192 (Leander, Moss, Moradi, Rasoolzadeh, TCHES 21) is a 7-round block cipher.

Designers claim :

‘The probability of any differential characteristic over 6 rounds is ≤ 2−192.

‘Not possible to add more than one key recovery round to any differential distinguisher.’

Better Steady than Speedy: Full Break of SPEEDY-7-192. Boura, David, Heim Boissier,
Naya-Plasencia. EUROCRYPT 2023

Distinguisher over 5.5 rounds (→ of proba 0 [BN24]).

Key recovery on 1.5 rounds.

This work motivated us to work more specifically on the key recovery step.
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In previous works

The key recovery step is often done

either in a ‘naive’ and non-efficient way;

or using a tedious and error-prone procedure.

Emergence of new tools for cryptanalysis.

most tools focus on the search for a differential distinguisher;

the key recovery step is often considered using heuristics (e.g. [DF16]).
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Our contribution: KYRYDI

A Generic Algorithm for Efficient Key Recovery in Differential Attacks - and its Associated Tool.
Boura, David, Derbez, Heim Boissier, Naya-Plasencia. EUROCRYPT 2024

Automatic key recovery for SPN block ciphers with

a bit-permutation as linear layer;

an (almost) linear key schedule.

Link to our tool KYRYDI:

https://gitlab.inria.fr/capsule/kyrydi
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Differential key recovery attacks

rm rounds

(X ,X ′) s.t. X + X ′ = ∆in

(Y ,Y ′) s.t. Y + Y ′ = ∆out

2−p

Differential distinguisher

rin roundsKin

rout roundsKout

(P,P ′) s.t. P + P ′ ∈ Din (dim din)

(C ,C ′) s.t. C + C ′ ∈ Dout (dim dout)

1

1

2−din
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Differential key recovery attacks

rm rounds

(X ,X ′) s.t. X + X ′ = ∆in

(Y ,Y ′) s.t. Y + Y ′ = ∆out

2−p

rin roundsKin

rout roundsKout

(P,P ′) s.t. P + P ′ ∈ Din (dim din)

(C ,C ′) s.t. C + C ′ ∈ Dout (dim dout)

1

1

2−din

Ex: Din = {0}4 × F4
2 × {0}4 × F4

2, din = 8.

Dout = {0}8 × F8
2 dout = 8.
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Differential key recovery attacks (1/3)

rm rounds

(X ,X ′) s.t. X + X ′ = ∆in

(Y ,Y ′) s.t. Y + Y ′ = ∆out

2−p

rin roundsKin

rout roundsKout

(P,P ′) s.t. P + P ′ ∈ Din (dim din)

(C ,C ′) s.t. C + C ′ ∈ Dout (dim dout)

1

1

2−din

1 Build enough pairs for at least one to satisfy the differential.

i.e. 2p+din pairs ((P,C), (P ′,C ′)) s.t. P + P ′ ∈ Din.

A structure of size 2din allows to build 22din pairs.

Ex: Din = {0}4 × F4
2 × {0}4 × F4

2, din = 8.

Structures of the form {c1} × F4
2 × {c2} × F4

2 where
c1, c2 ∈ F4

2.

To build enough pairs, one needs 2p−din such structures.

Data complexity: 2p plaintexts/ciphertext pairs.
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Differential key recovery attacks (2/3)

rm rounds

(X ,X ′) s.t. X + X ′ = ∆in

(Y ,Y ′) s.t. Y + Y ′ = ∆out

2−p

rin roundsKin

rout roundsKout

(P,P ′) s.t. P + P ′ ∈ Din (dim din)

(C ,C ′) s.t. C + C ′ ∈ Dout (dim dout)

1

1

2−din 2 Filter out pairs that cannot follow the differential.

i.e. only retain the fraction 2dout−n of pairs s.t. C + C ′ ∈ Dout .

Ex: Dout = {0}8 × F8
2, dout = 8 → filter 2−8.

Can be done e.g. using hash tables.

Done for a cost at most 2p i.e. the data complexity.

Number of pairs to consider in the key recovery step:

N = 2p+din+dout−n .
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Differential key recovery attacks

rm rounds

(X ,X ′) s.t. X + X ′ = ∆in

(Y ,Y ′) s.t. Y + Y ′ = ∆out

2−p

rin roundsKin

rout roundsKout

(P,P ′) s.t. P + P ′ ∈ Din (dim din)

(C ,C ′) s.t. C + C ′ ∈ Dout (dim dout)

1

1

2−din

The N pairs provide a test for each guess on the involved external key
material:

Correct key guess: one pair satisfies the differential.

Wrong key guess: on average, N · 2−din−dout = 2p−n ≪ 1
‘false alarm(s)’.

Remaining candidates: 2p−n+κ′
≪ 2κ′

.

where κ′ is the number of bits involved in the external key material.

NB: an exhaustive search on the remaining unknown key bits is required.
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3. Core key recovery step

Procedure that allows to enumerate the alarms ((P,P ′), (C ,C ′),K ) as efficiently as possible.

(P,P′), (C ,C ′)

Filtered pairs

N

P + P′ ∈ Din

C + C ′ ∈ Dout

(P,P′), (C ,C ′),K

‘Alarms’

2p−n+κ′

K ∈ Fκ′
2 partially encrypts/decrypts

(P,P′) to ∆in, (C ,C ′) to ∆out

‘Core’ key recovery step

What is the complexity of this procedure?

Upper bound: min(2κ,N · 2κ′
) Lower bound: N + 2p−n+κ′
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Outline

1 Differential Cryptanalysis of Block Ciphers

2 Our Model of the Core Key Recovery Step

3 A Generic Algorithm for the Core Key Recovery Step

4 Applications
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The key recovery problem as a graph

S2,0

S1,2S1,0

S0,2S0,0 S0,1S0,3

S4,2

S5,1 S5,0

S6,2 S6,3 S6,0 S6,1

‘Solving’ an active S-box: For a given pair, finding the guesses on the
key material that allow it to respect the differential constraints.

The Key Recovery Step in Differential Attacks 14 / 31



‘Solving’ S-boxes : the example of S0,0

A solution to S is any tuple (x , x ′, k) s.t. x + x ′ ∈ νin and S(x + k) + S(x ′ + k) ∈ νout .

S0,0

x , x ′

⊕ ⊕ ⊕ ⊕
* * * *

k

* 0 0 0

Number of solutions (x , x ′, k) to S0,0: 24+1+2 = 27.

S0,0 is an S-box of the first round :
On any of the N pairs, the plaintext pair determines the value of
(x , x ′).

Probability to match a solution is ci = 27 · 2−8 = 2−1.

Solving S0,0 filters N · 2−1 triplets with a determined value on 2 key bits.

Goal: Reduce the number of triplets as early as possible whilst maximizing the number of
determined key bits.
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‘Solving’ S-boxes

(P,P′), (C ,C ′)N (P,P′), (C ,C ′), k N · 2−1
Solving S0,0

(P,P′), (C ,C ′),K 2p−n+κ′Solve other S-boxes
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‘Solving’ S-boxes

(P,P′), (C ,C ′)N (P,P′), (C ,C ′), k N · ci
Solving Si

(P,P′), (C ,C ′),K 2p−n+κ′Solve other S-boxes

This can be generalised to any subset of active S-boxes!
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The key recovery problem as a graph

S2,0

S1,2S1,0

S0,2S0,0 S0,1S0,3

S4,2

S5,1 S5,0

S6,2 S6,3 S6,0 S6,1

5

3 4

1 2

Key recovery = partition of the nodes + associated order
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Outline

1 Differential Cryptanalysis of Block Ciphers

2 Our Model of the Core Key Recovery Step

3 A Generic Algorithm for the Core Key Recovery Step

4 Applications
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Considering strategies

Strategy SX for a subgraph X

Procedure that defines a partition of X and an order in which each subgraph in the partition is solved.

Parameters of a strategy SX :

number of solutions sX

online time complexity T (SX )

S5,0

2

S6,1S6,03

S5,0

S6,1

1

S6,0

A strategy can be further refined with extra information: e.g. memory, offline time.

Goal: Build an efficient strategy for the whole graph.

Based on basic strategies: strategies for a single S-box and an ‘initial N pairs’ strategy O.
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online time complexity T (SX )

S5,0
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S6,1 1S6,03
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1
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A strategy can be further refined with extra information: e.g. memory, offline time.

Goal: Build an efficient strategy for the whole graph.

Based on basic strategies: strategies for a single S-box and an ‘initial N pairs’ strategy O.
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Merging two strategies

Assuming that sX < sY , the merge S ′ of SX and SY is the strategy which consists in

1 running SX , store the solutions in a hash table;

2 running SY , and for each solution, look for matches.

Parameters of S ′

sX∪Y = sX + sY −# bit-relations between the nodes of X and Y � log scale

T (S ′) ≈ max(T (SX ),T (SY ), sX∪Y )

An optimal strategy for a graph is obtained by merging two optimal strategies for two of its
subgraphs.
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A dynamic programming approach

‘An optimal strategy for a graph is obtained by merging two optimal strategies for two of its
subgraphs’

Dynamic programming approach:

‘Clever’ exhaustive search.

Bottom-up approach: merge strategies with a small time complexity first.

Keep only the optimal strategy found for each subgraph X .

Restricting merges thanks to heuristics.
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Comparing two strategies

Compare two strategies S 1
X and S 2

X for the same subgraph X

1 Choose the one with the best time complexity.
2 If same time complexity, choose the one with the best memory complexity.

Compare S 1
X and S 2

Y when Y ⊂ X

If the number of solutions and time complexity of S 1
X are not higher than those of S 2

Y ,
then we can freely replace S 2

Y by S 1
X .
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Restricting merges (1/2)

1 Only allow merges between co-dependent sub-graphs:

An edge between two nodes;

Or at least a common node between two subgraphs.

Examples:

S = {O,S0,0} cannot be merged with S ′ = {S1,2}.

S = {O,S6,0} can be merged with S ′ = {S0,0}.

S2,0

S1,2S1,0

S0,2S0,0 S0,1S0,3

S4,2

S5,1 S5,0

S6,2 S6,3 S6,0 S6,1
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Restricting merges (2/2)

2 A non-filtering node can be merged with an online strategy iff

It is computed by partially encrypting/decrypting the
data;
Or it does not increase the number of solutions.

Examples:

S = {O,S0,0,S0,2} can always be merged with S ′ = {S1,0}.

S = {O,S0,0} can only be merged with S ′ = {S1,0} if it
does not increase the number of solutions.

S2,0

S1,2S1,0

S0,2S0,0 S0,1S0,3

S4,2

S5,1 S5,0

S6,2 S6,3 S6,0 S6,1
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Additional improvements (1/2) : Sieving

Idea: Use the differential constraints to filter out pairs that cannot follow the differential,
regardless of the value of the key.

Example:
(x3, x′3, x2, x

′
2, x1 ⊕ x′1, x0 ⊕ x′0)

Filter: 36/26 = 2−0.83.

Pre-sieving

Apply a sieve on all S-boxes of the external rounds.
Advantage : The key recovery step is performed on N ′ ≤ N pairs.
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Additional improvements (2/2) : Precomputing partial solutions

Idea: Precompute the partial solutions to some subgraph.

S5,0

S6,1S6,0

Impact on the memory complexity and the offline time of the attack.

The key recovery strategy found by the tool depends on how much memory and offline
time are allowed.
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Outline

1 Differential Cryptanalysis of Block Ciphers

2 Our Model of the Core Key Recovery Step

3 A Generic Algorithm for the Core Key Recovery Step

4 Applications
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Application to the toy cipher

The Key Recovery Step in Differential Attacks 28 / 31

Nr solutions: N · 21.63.

Time complexity: N · 22.12.

(Optimal)

Memory: N · 26.
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Applications

Start from an existing distinguisher that led to the best key recovery attack against the target cipher.

RECTANGLE-128: Extended by one round the previous best attack.

From 18 to 19 rounds out of 25.

PRESENT-80: Extended by two rounds the previous best differential attack.

From 16 to 18 rounds out of 31.

GIFT-64: Best key recovery strategy without additional techniques.

26 rounds out of 28.
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Future improvements, open questions

Taking into account key-schedule relations more accurately (including non-linear ones?).

Incorporate tree-based key recovery techniques [Bro+21].

Handle ciphers with more complex linear layers.

Prove optimality.

Generalise to other attacks.

The best distinguisher does not always lead to the best key recovery!

Ultimate goal

Combine the tool with a distinguisher-search algorithm to find the best possible attacks.
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A dynamic programming approach

Simplified algorithm: Initialisation

Create two lists:

Ldone ← O where O corresponds to the ‘initial N pairs’ node.

Lcurrent ← basic strategies.

Ex: toy cipher:
S0,0,S0,1,S0,2,S0,3,S1,0,S1,2,S2,0,S6,0,S6,1,S6,2,S6,3,S5,0,S5,1,S4,2

NB: The ‘online node’ O is linked to all the plaintext/ciphertext nodes.

.

S2,0

S1,2S1,0

S0,2S0,0 S0,1S0,3

S4,2

S5,1 S5,0

S6,2 S6,3 S6,0 S6,1
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A dynamic programming approach

Simplified algorithm (2)

While Lcurrent ̸= ∅:
Let S be the strategy from Lcurrent with the smallest T .

For any S ′ in Ldone allowed to be merged with S :
Let S ′′ be their merge.
If no strategy from Ldone nor Lcurrent is better than S ′′:

Add S ′′ to Lcurrent .
Remove from both Ldone and Lcurrent all strategies worst
than S ′′.

Remove S from Lcurrent , add it to Ldone .
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