

Generic attacks using random functions statistics

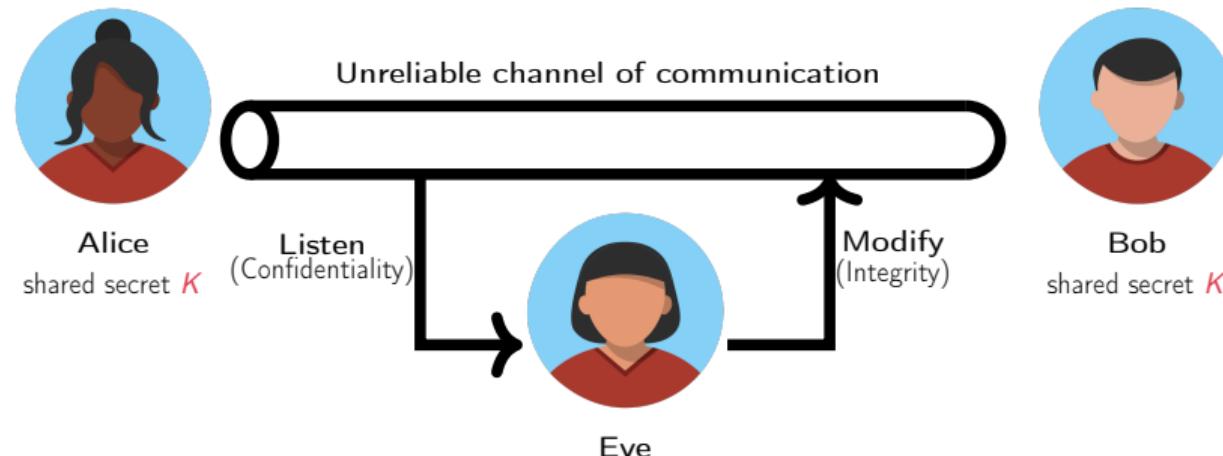
Rachelle Heim Boissier

Université Catholique de Louvain

Nov. 2025

Symmetric cryptology

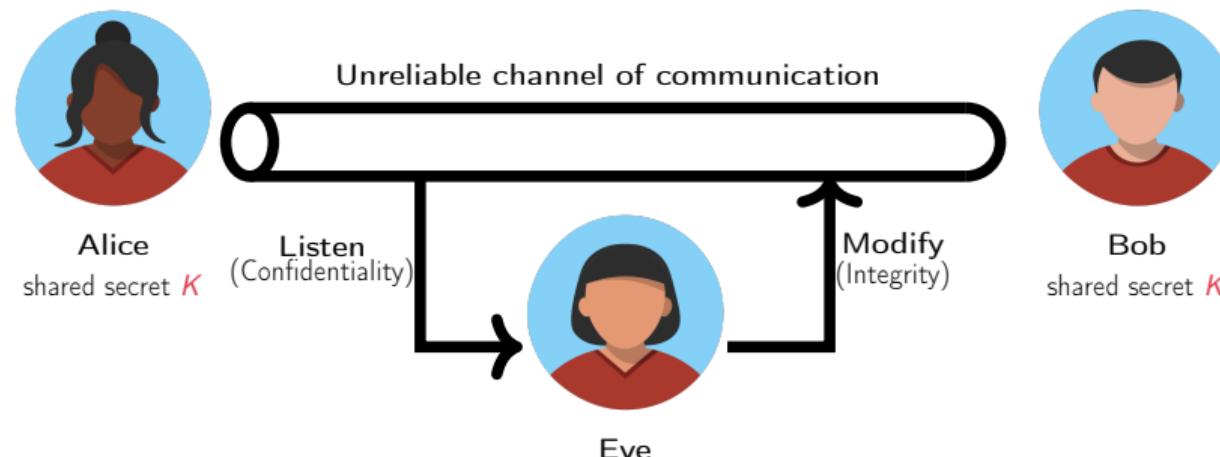
Symmetric cryptology studies algorithms allowing two entities that share a common secret, the key K , to communicate in a secure manner*



Symmetric cryptology

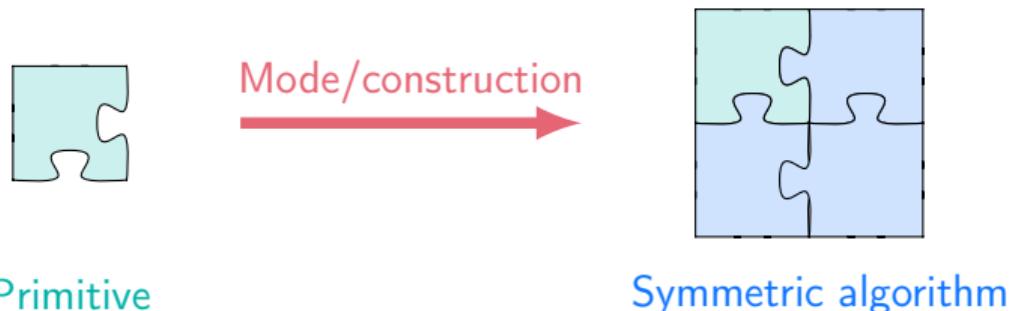
Symmetric cryptology studies algorithms allowing two entities that share a common secret, the key K , to communicate in a secure manner*

*... as well as some 'keyless' algorithms such as hash functions.



Building symmetric algorithms

Cryptography relies on building blocks called *primitives* used within *modes of operation* or *constructions* to build more complex algorithms.



- The notion of *primitive* is *relative*.
- Most primitives do not provide a *standalone cryptographic mechanism* on their own.

Primitives

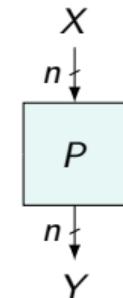
- A **block cipher** of key size κ bits and block size n bits is a function

$$\begin{array}{rccc} E & : & \mathbb{F}_2^\kappa \times \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2^n \\ & & (K, X) & \longmapsto & E(K, X) \end{array}$$

such that for any key K , $E_K(\cdot) := E(K, \cdot)$ is a **permutation** of \mathbb{F}_2^n .



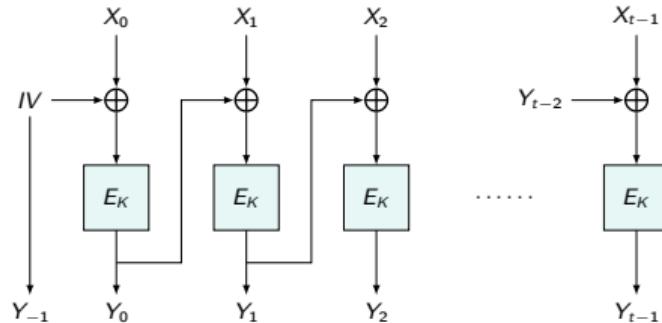
- A **public permutation** P over \mathbb{F}_2^n does not depend on a key.



Modes/constructions

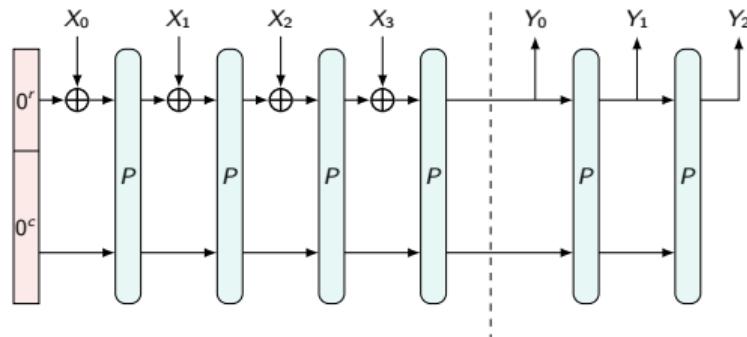
■ Block cipher-based

Ex: the encryption mode **CBC**.



■ Permutation-based

Ex: the **sponge construction** for hashing.



Security in cryptography (1/2)

Two main approaches:

- **Provable security**: reducing the security of a scheme to some ‘reasonable’ assumption.
 - How do we assess the reasonability of our assumption?
- **Cryptanalysis**: security analysis effort.
 - If the international cryptographic community cannot break it, then, hopefully, noone else can.
 - International standardisation competitions organised by the NIST.
 - The cryptanalysis effort should be global, continuous and comprehensive.

Security in cryptography (2/2)

Primitive security

- can **only** be guaranteed through cryptanalysis.

Mode/construction security

- **Proved** under the assumption that the primitive is **secure**.
- Proofs provide a **partial information** on the security level.
- Cryptanalysis, and in particular generic attacks, provides a **complementary point of view**.

A **generic attack** assumes an ideal behaviour of the underlying primitive.

Elementary ex: generic key recovery attack on E given X and $Y = E_K(X)$.

- Exhaustively try the 2^κ possible secret keys.

This talk

- Symmetric cryptanalysis.
- Generic attacks against a variety of iterated constructions:
 - Hash functions;
 - Message Authentication Codes (MAC) modes;
 - Authenticated encryption (AE) modes.
- Our main tool: random functions graphs statistics.

Outline

- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes
- 5 Conclusion

Random functions

\mathfrak{F}_N is the set of functions which map a finite set of size $N \in \mathbb{N}^*$ to itself.

Our main focus:

The **graph of f** , denoted by $G(f)$, is a **directed graph** such that an edge goes from node i to node j if and only if $f(i) = j$.

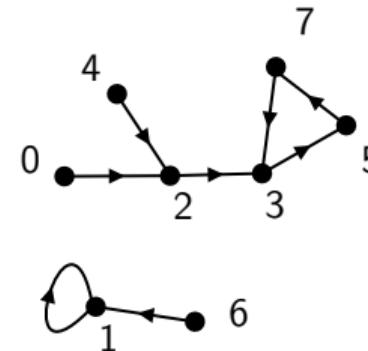
Properties and statistics of **functional graphs** are used in **generic attacks**.

Functional graphs: an example

The **graph of f** , denoted by $G(f)$, is a **directed graph** such that an edge goes from node i to node j if and only if $f(i) = j$.

$$f : \llbracket 0; 7 \rrbracket \longrightarrow \llbracket 0; 7 \rrbracket$$

$$\left\{ \begin{array}{l} 0 \rightarrow 2 \\ 1 \rightarrow 1 \\ 2 \rightarrow 3 \\ 3 \rightarrow 5 \\ 4 \rightarrow 2 \\ 5 \rightarrow 7 \\ 6 \rightarrow 1 \\ 7 \rightarrow 3 \end{array} \right.$$



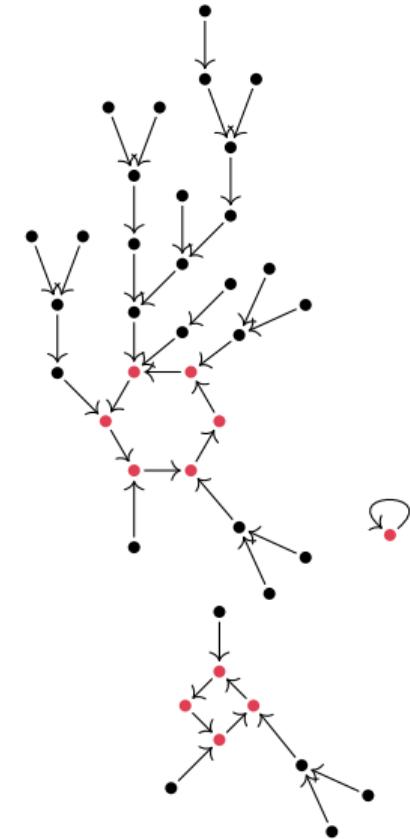
Functional graphs (1)

Definitions.

- The graph of f can be seen as a set of **connected components**.
- Each connected component has a unique **cycle**.
- Each cyclic node is the root of a **tree**.

Statistics (e.g. [FO89]).

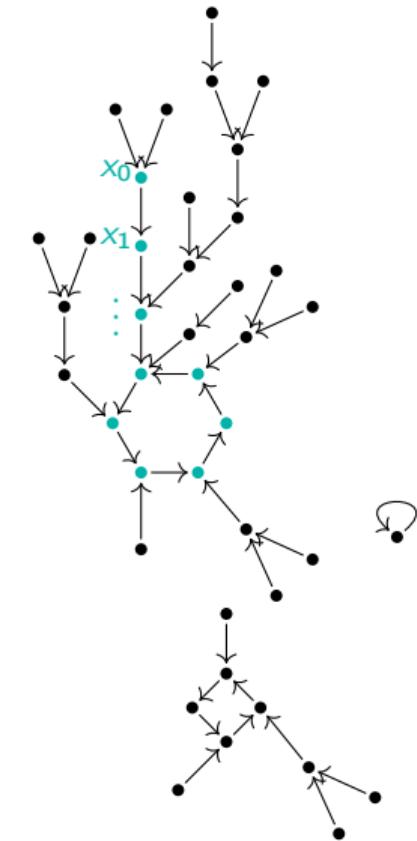
- Expected size of f 's **largest component**: $0.76N$
- Expected size of f 's **largest tree**: $0.48N$



Functional graphs (2)

For any $x_0 \in G(f)$

- $(x_i := f^i(x_0))_{i \in \mathbb{N}}$ is eventually **periodic**.
- $(x_i)_{i \in \mathbb{N}}$ graphically corresponds to a **path** linked to a **cycle**.



Functional graphs (2)

For any $x_0 \in G(f)$

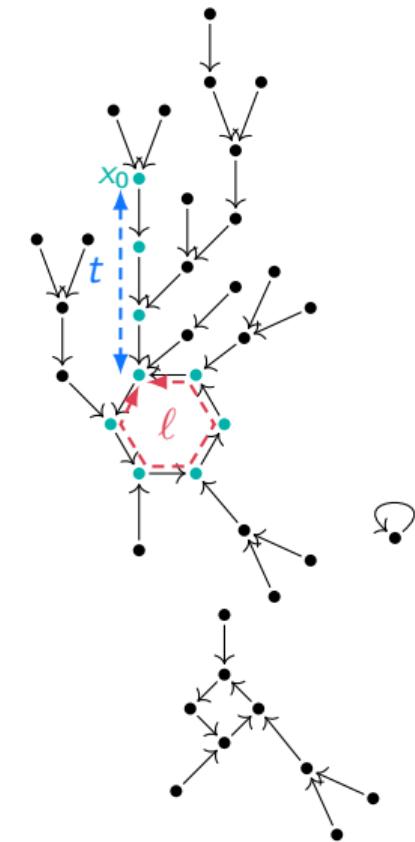
- $(x_i := f^i(x_0))_{i \in \mathbb{N}}$ is eventually **periodic**.
- $(x_i)_{i \in \mathbb{N}}$ graphically corresponds to a **path** linked to a **cycle**.

Definitions.

- **Tail length $t(x_0)$** : smallest i s.t. x_i is in the cycle.
- **Cycle length $\ell(x_0)$** : number of nodes in the cycle.

Statistics. For x a random node:

- Expected value of its **tail length $t(x)$** : $\sqrt{\pi N/8}$.
- Expected value of its **cycle length $\ell(x)$** : $\sqrt{\pi N/8}$.



Outline

- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes
- 5 Conclusion

Cryptographic hash functions

Definition. A [cryptographic hash function](#) is a function $H : \mathbb{F}_2^* \rightarrow \mathbb{F}_2^n$ such that

- **Preimage resistance.** Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. $H(M) = D$;
- **Second preimage resistance.** Given M , it is difficult to find $M' \neq M$ s.t. $H(M') = H(M)$;
- **Collision resistance.** It is difficult to find (M, M') , $M \neq M'$ such that $H(M) = H(M')$.

Cryptographic hash functions

Definition. A [cryptographic hash function](#) is a function $H : \mathbb{F}_2^* \rightarrow \mathbb{F}_2^n$ such that

- **Preimage resistance.** Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. $H(M) = D$;
- **Second preimage resistance.** Given M , it is difficult to find $M' \neq M$ s.t. $H(M') = H(M)$;
- **Collision resistance.** It is difficult to find (M, M') , $M \neq M'$ such that $H(M) = H(M')$.

Generic collision attack: Compute $H(M)$ for $O(2^{n/2})$ messages M , store M at the address $H(M)$.

Cryptographic hash functions

Definition. A [cryptographic hash function](#) is a function $H : \mathbb{F}_2^* \rightarrow \mathbb{F}_2^n$ such that

- **Preimage resistance.** Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. $H(M) = D$;
- **Second preimage resistance.** Given M , it is difficult to find $M' \neq M$ s.t. $H(M') = H(M)$;
- **Collision resistance.** It is difficult to find (M, M') , $M \neq M'$ such that $H(M) = H(M')$.

Generic collision attack: Compute $H(M)$ for $O(2^{n/2})$ messages M , store M at the address $H(M)$.

[Memory complexity](#) is also a $O(2^{n/2})$.

Cryptographic hash functions

Definition. A [cryptographic hash function](#) is a function $H : \mathbb{F}_2^* \rightarrow \mathbb{F}_2^n$ such that

- **Preimage resistance.** Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. $H(M) = D$;
- **Second preimage resistance.** Given M , it is difficult to find $M' \neq M$ s.t. $H(M') = H(M)$;
- **Collision resistance.** It is difficult to find (M, M') , $M \neq M'$ such that $H(M) = H(M')$.

Generic collision attack: Compute $H(M)$ for $O(2^{n/2})$ messages M , store M at the address $H(M)$.

[Memory complexity](#) is also a $O(2^{n/2})$.

Solution: a generic memory-negligible collision attack using [functional graphs](#).

A memory-negligible collision attack on H

Let $f \in \mathfrak{F}_{2^n}$ be defined as

$$\begin{aligned} f &: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n \\ x &\longmapsto H(x). \end{aligned}$$

Step 1. A cycle finding algorithm allows to recover a cyclic node x_c

- in time $O(2^{n/2})$;
- using a negligible amount of memory.

Step 2. Using x_c , one can

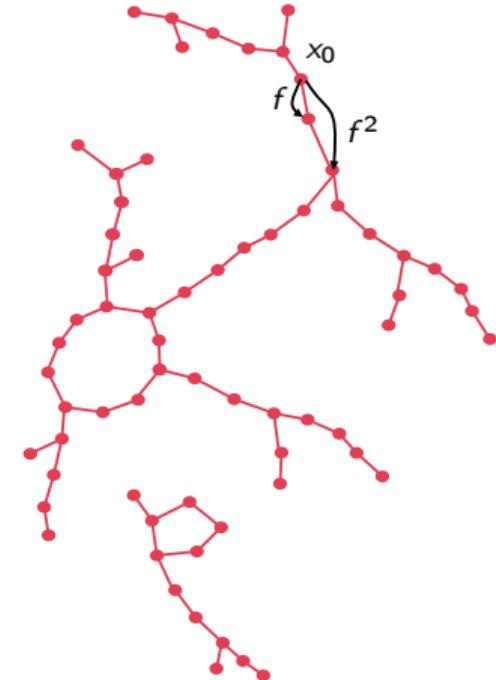
- recover the cycle length $\ell(x_c)$,
- find a collision on f , and thus on H ,

in time $O(2^{n/2})$ and with negligible memory.

Ex: Floyd's cycle finding algorithm

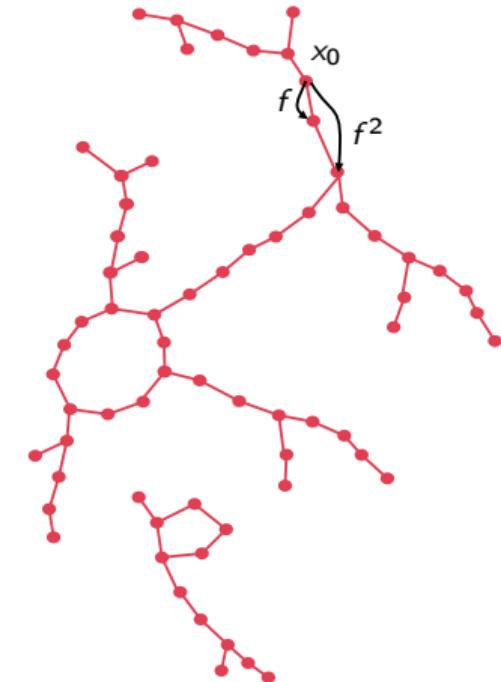
parameters: $f \in \mathfrak{F}_{2^n}$

```
1:  $x_0 \leftarrow_R \mathbb{F}_2^n$ 
2: turtle, hare  $\leftarrow x_0, x_0$ 
3: for  $i = 1$  to  $2^n - 1$  do
4:    $turtle \leftarrow f(turtle)$ 
5:    $hare \leftarrow f^2(hare)$ 
6:   if  $turtle = hare$  then
7:     return turtle
8:   end if
9: end for
```



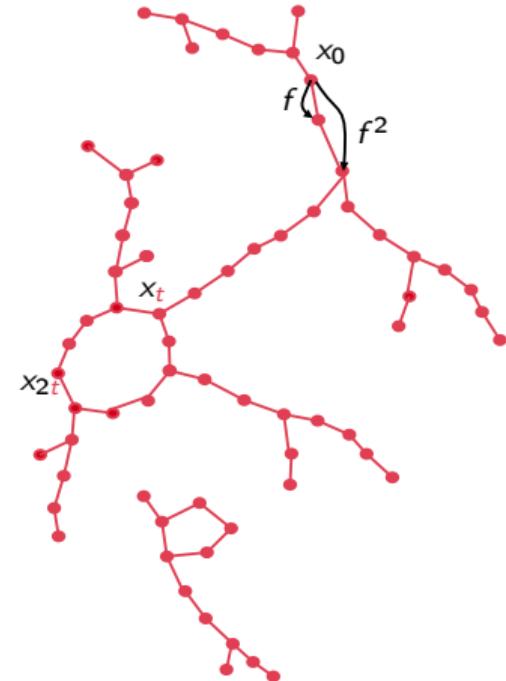
Ex: Floyd's cycle finding algorithm

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.



Ex: Floyd's cycle finding algorithm

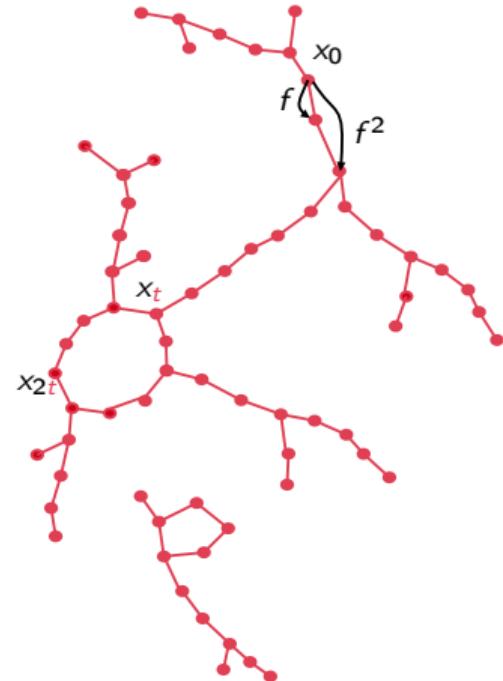
The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.



Ex: Floyd's cycle finding algorithm

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = \text{dist}(x_t, x_{2t})$.



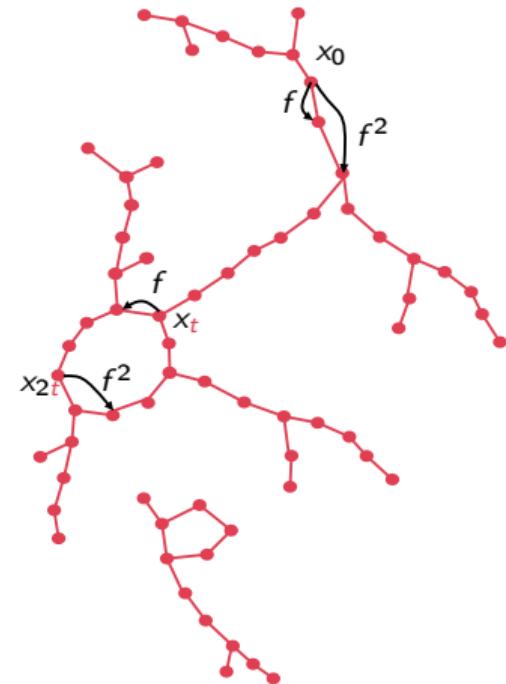
Ex: Floyd's cycle finding algorithm

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = \text{dist}(x_t, x_{2t})$.

Then

$$\text{dist}(f(x_t), f^2(x_{2t})) = d_t + 1 \pmod{\ell}.$$



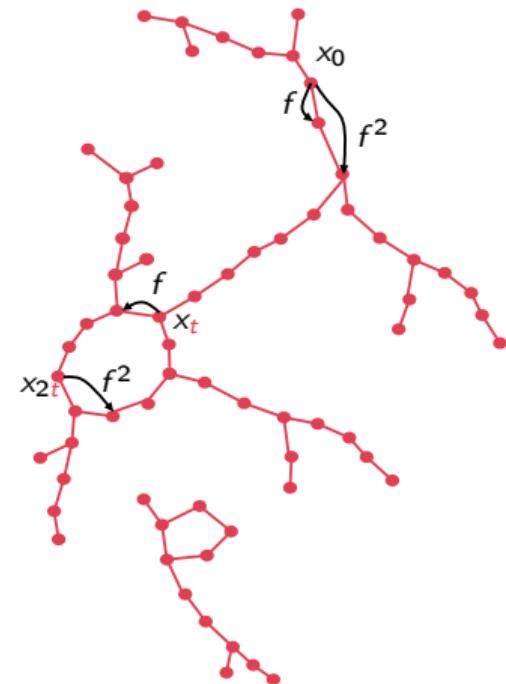
Ex: Floyd's cycle finding algorithm

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = \text{dist}(x_t, x_{2t})$.

Then

$$\text{dist}(x_{t+k}, x_{2(t+k)}) = d_t + k \pmod{\ell}.$$



Ex: Floyd's cycle finding algorithm

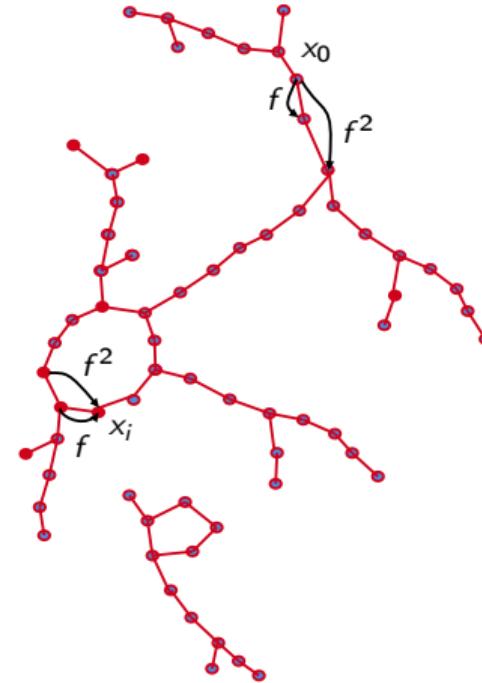
The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = \text{dist}(x_t, x_{2t})$.

Then

$$\text{dist}(x_{t+k}, x_{2(t+k)}) = d_t + k \pmod{\ell}.$$

After at most $t + \ell$ tries, the algorithm finds i s.t. $x_i = x_{2i}$, and x_i is in the cycle.



Ex: Floyd's cycle finding algorithm

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

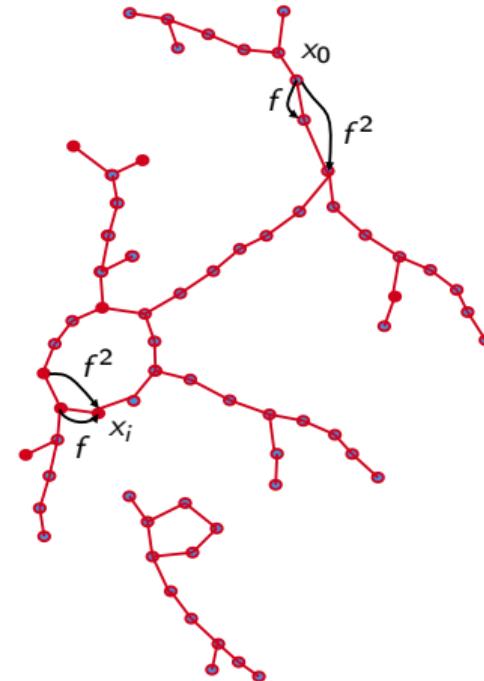
Let $d_t = \text{dist}(x_t, x_{2t})$.

Then

$$\text{dist}(x_{t+k}, x_{2(t+k)}) = d_t + k \pmod{\ell}.$$

After at most $t + \ell$ tries, the algorithm finds i s.t. $x_i = x_{2i}$, and x_i is in the cycle.

If f behaves like a random function, if x_0 is drawn at random, we expect $t = \ell = \sqrt{\pi/8} \cdot 2^{n/2}$.



Ex: Floyd's cycle finding algorithm

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = \text{dist}(x_t, x_{2t})$.

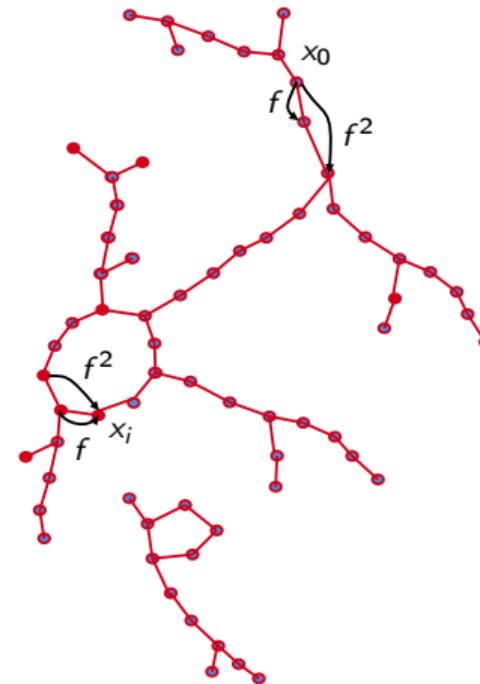
Then

$$\text{dist}(x_{t+k}, x_{2(t+k)}) = d_t + k \pmod{\ell}.$$

After at most $t + \ell$ tries, the algorithm finds i s.t. $x_i = x_{2i}$, and x_i is in the cycle.

If f behaves like a random function, if x_0 is drawn at random, we expect $t = \ell = \sqrt{\pi/8} \cdot 2^{n/2}$.

Floyd's time complexity: $O(2^{n/2})$ evaluations of f , memory complexity is negligible.



d

A memory-negligible collision attack on H

Let $f \in \mathfrak{F}_{2^n}$ be defined as

$$\begin{aligned} f &: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n \\ x &\longmapsto H(x). \end{aligned}$$

Step 1. A cycle finding algorithm allows to recover a cyclic node x_c

- in time $O(2^{n/2})$;
- using a negligible amount of memory.

Step 2. Using x_c , one can

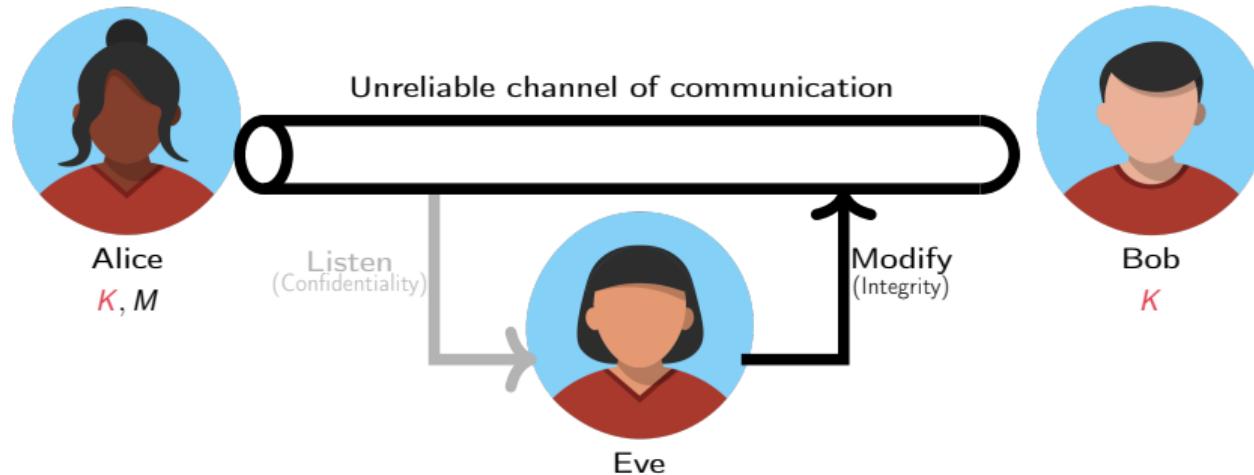
- recover the cycle length $\ell(x_c)$,
- find a collision on f , and thus on H ,

in time $O(2^{n/2})$ and with negligible memory.

Outline

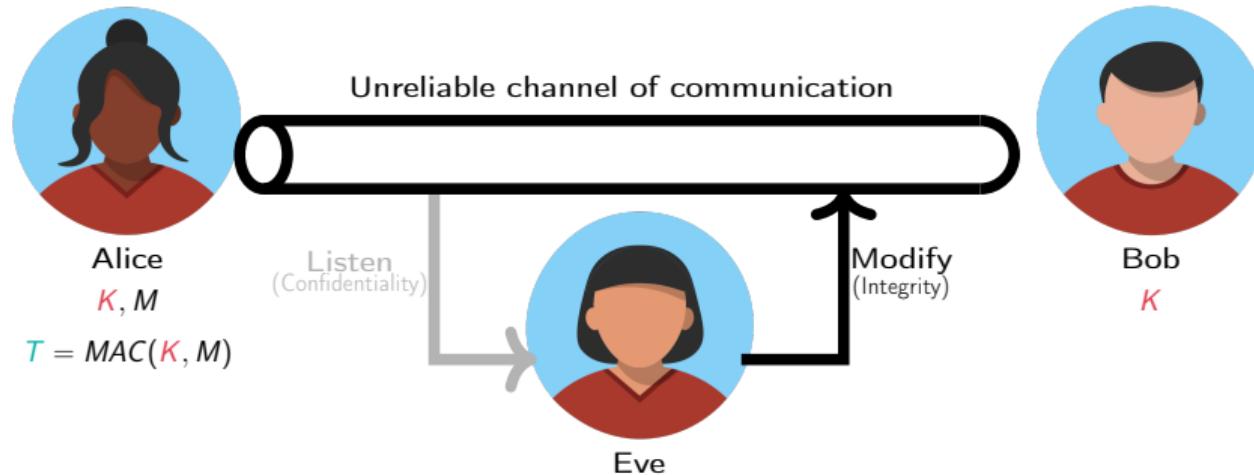
- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes
- 5 Conclusion

Message Authentication Code (MAC) algorithms



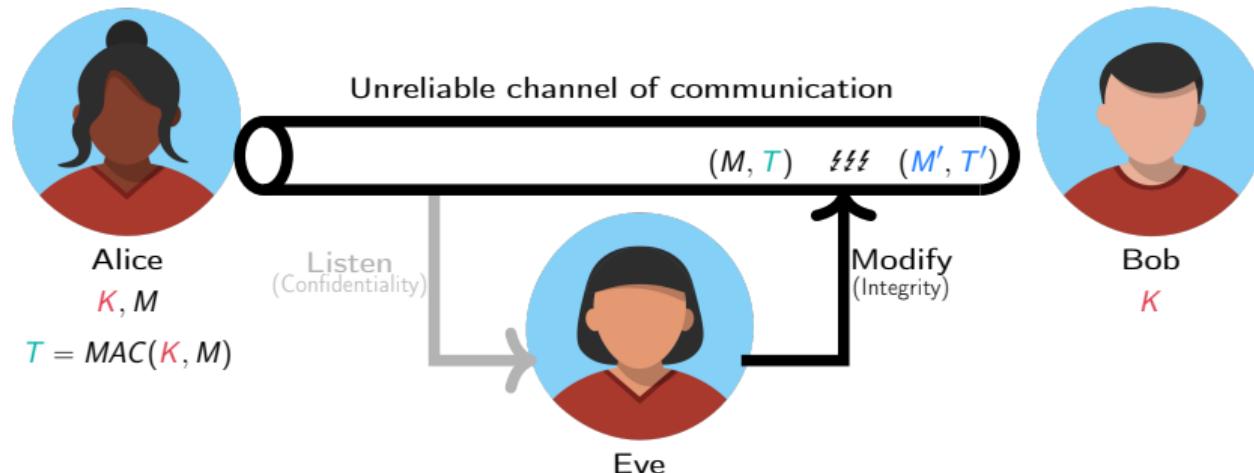
A Message Authentication Code algorithm (MAC) produces a fixed length **tag** that guarantees the integrity of the message.

Message Authentication Code (MAC) algorithms



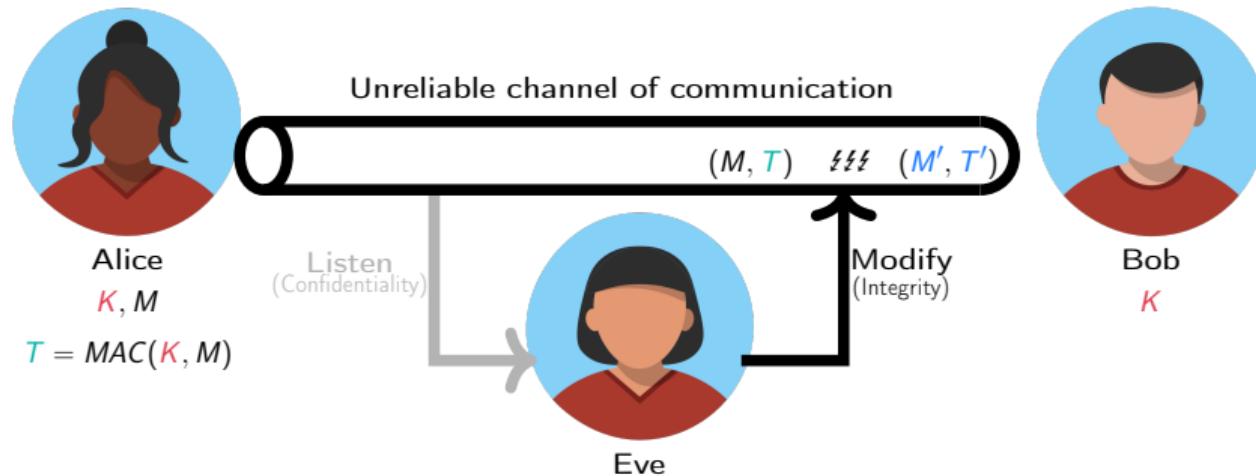
A Message Authentication Code algorithm (MAC) produces a fixed length **tag** that guarantees the integrity of the message.

Message Authentication Code (MAC) algorithms



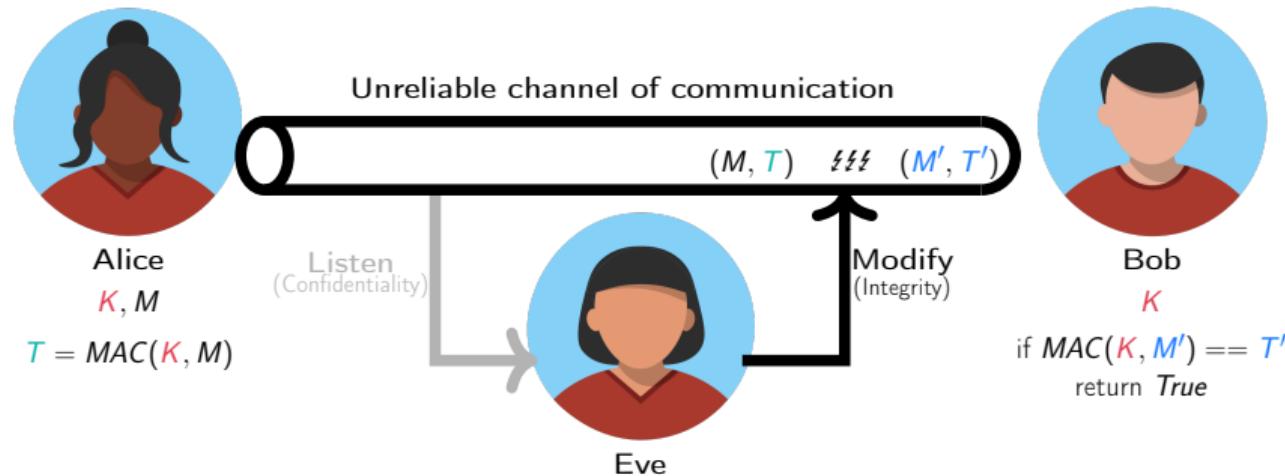
A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the integrity of the message.

Message Authentication Code (MAC) algorithms



A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the integrity of the message.

Message Authentication Code (MAC) algorithms



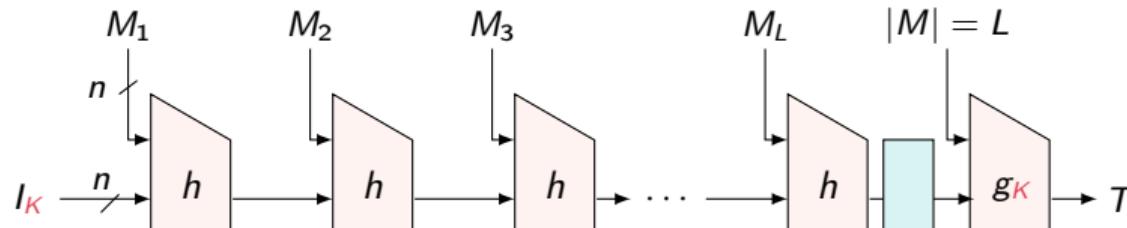
A Message Authentication Code algorithm (MAC) produces a fixed length **tag** that guarantees the integrity of the message.

Hash-based MACs

Hash functions can be used to build MACs.

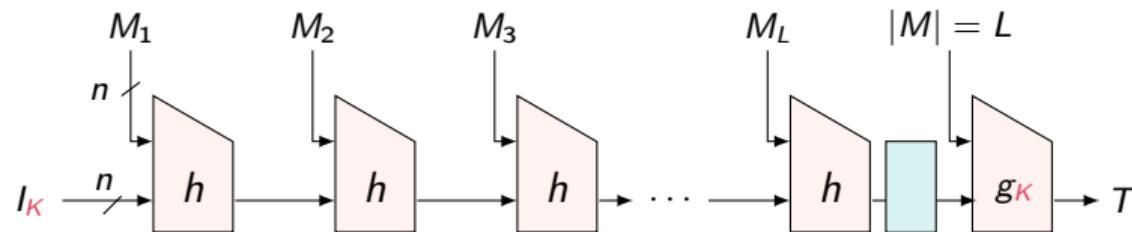
- It is easy to build a secure MAC with an ideal hash function, i.e. a [random oracle](#).
- With a real hash function, it is essential to study [generic attacks](#).
- [Several papers](#) analyse the generic security of HMACs.

We present a 2013 [state recovery attack](#) by Leurent, Peyrin and Wang on HMAC [BCK96].



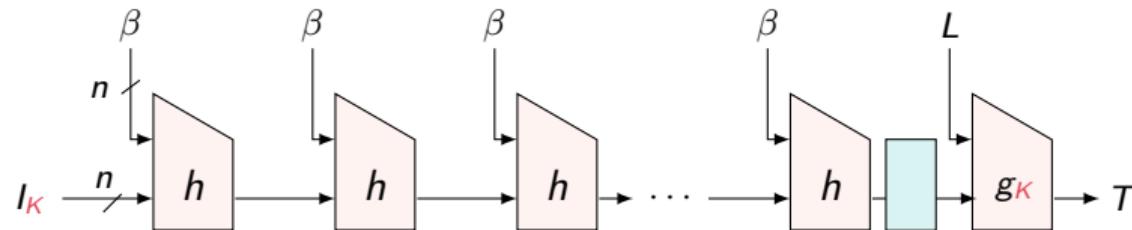
State-recovery attack on HMAC [LPW13]

$$M = M_1 \parallel \cdots \parallel M_L$$



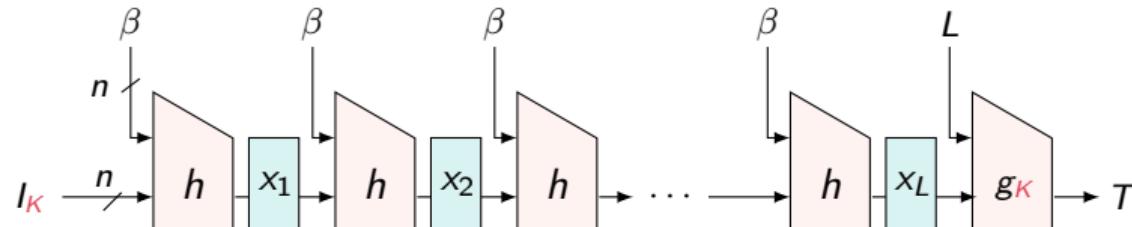
State-recovery attack on HMAC [LPW13]

$$M = \beta \parallel \cdots \parallel \beta = \beta^L$$



State-recovery attack on HMAC [LPW13]

$$M = \beta \parallel \cdots \parallel \beta = \beta^L$$

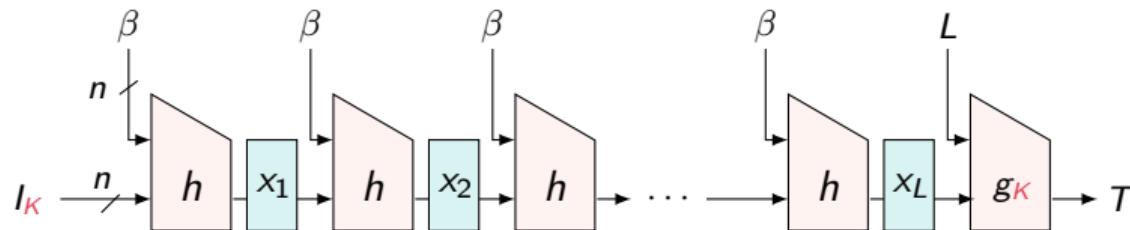


The tag generation iterates the function

$$\begin{aligned} h_\beta : \mathbb{F}_2^n &\longrightarrow \mathbb{F}_2^n \\ x &\longmapsto h(\beta, x). \end{aligned}$$

State-recovery attack on HMAC [LPW13]

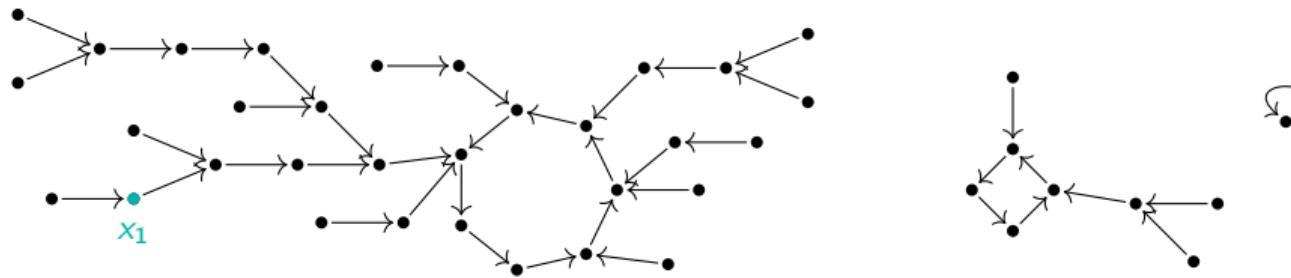
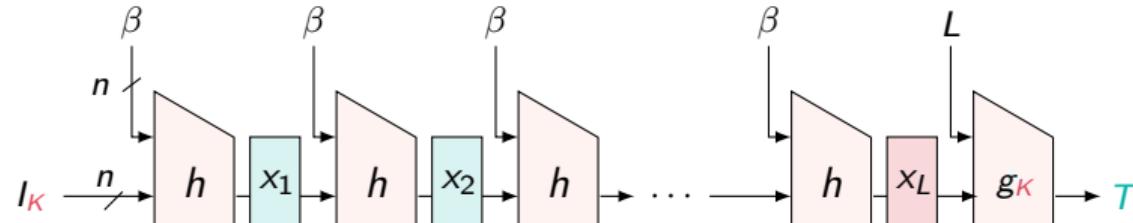
$$M = \beta || \dots || \beta = \beta^L$$



- For a random β , we expect h_β to behave as a **function drawn at random** in \mathfrak{F}_{2^n} .
 - Giant component with about 76% of the nodes.
- We expect x_1 to behave as a **node drawn at random** in the graph of h_β .
 - With proba 0.76, x_1 is in the giant component.
 - $t(x_1) = \ell(x_1) = \sqrt{\pi/8} \cdot 2^{n/2}$.

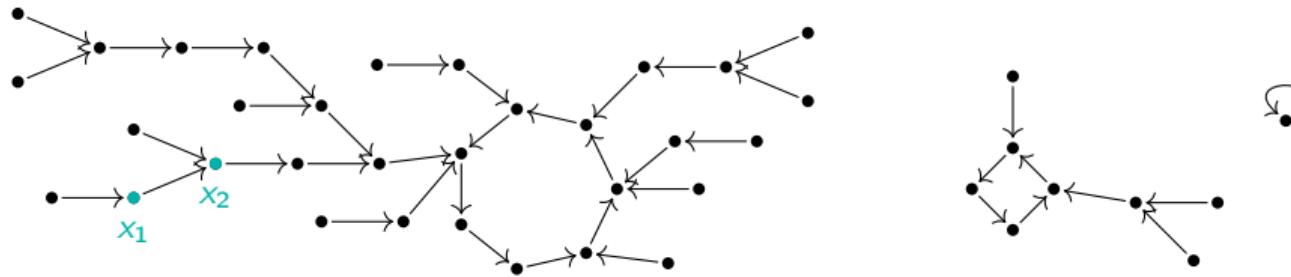
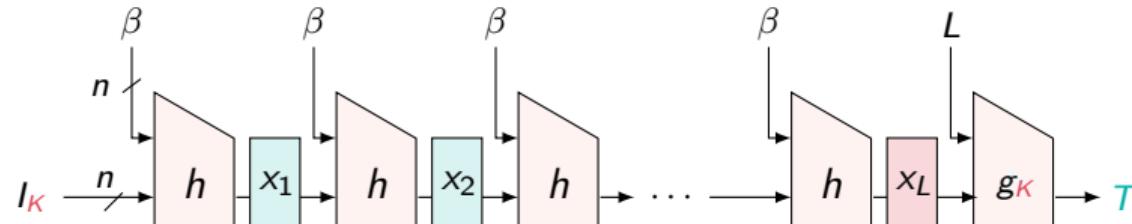
State-recovery attack on HMAC [LPW13]

- Setting $L = cst \cdot 2^{n/2}$:



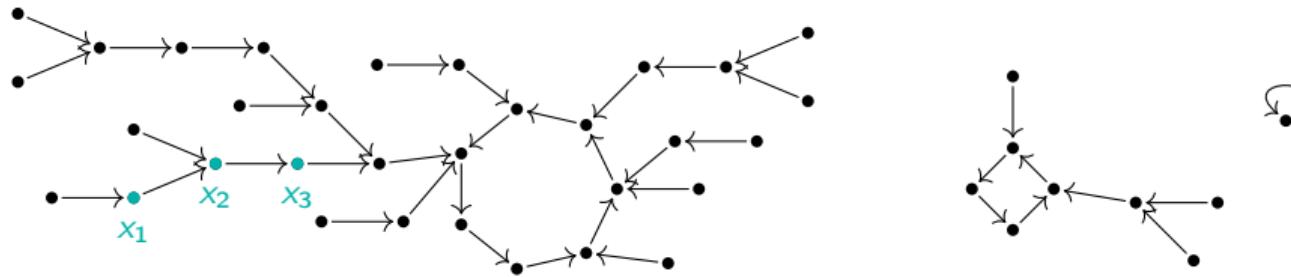
State-recovery attack on HMAC [LPW13]

- Setting $L = cst \cdot 2^{n/2}$:

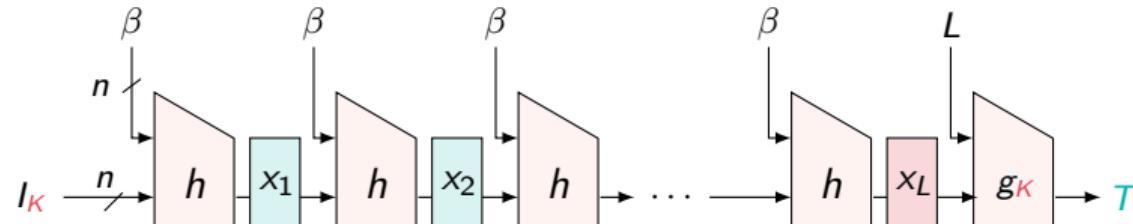


State-recovery attack on HMAC [LPW13]

- Setting $L = cst \cdot 2^{n/2}$:

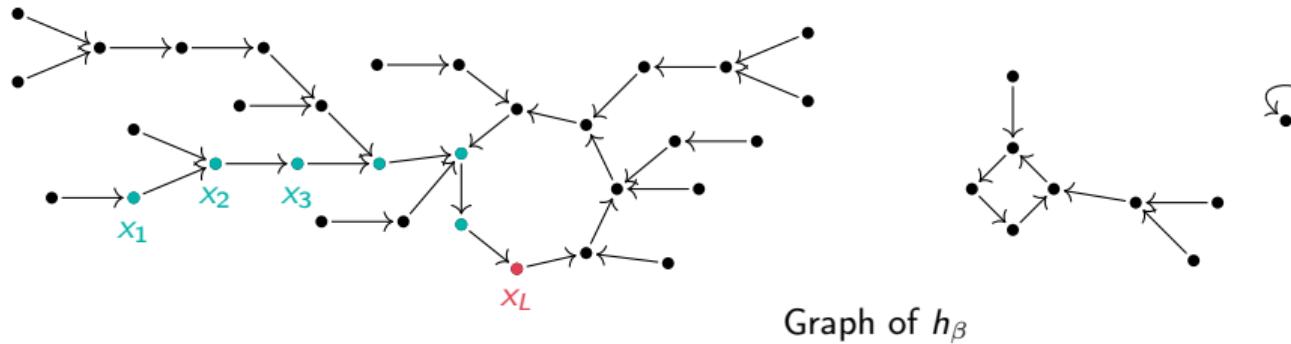
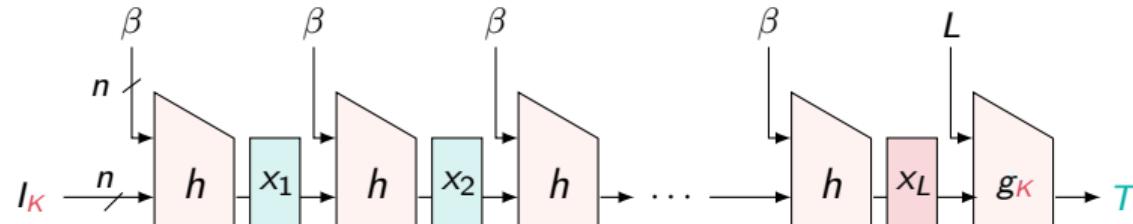


Graph of h_β

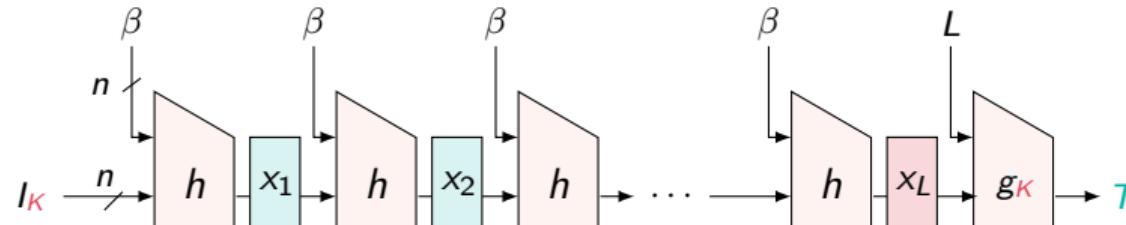
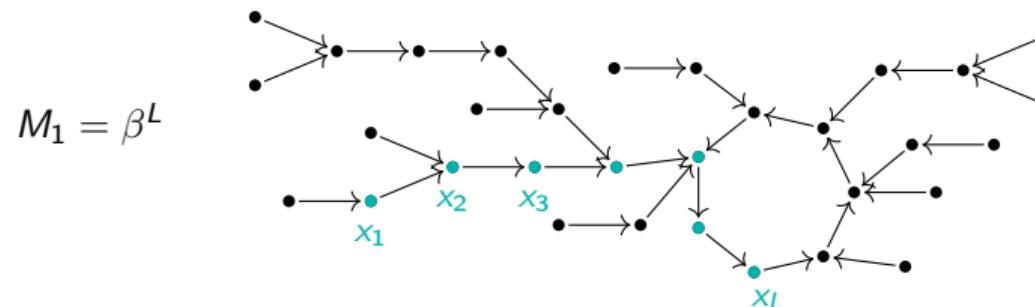


State-recovery attack on HMAC [LPW13]

- Setting $L = cst \cdot 2^{n/2}$:



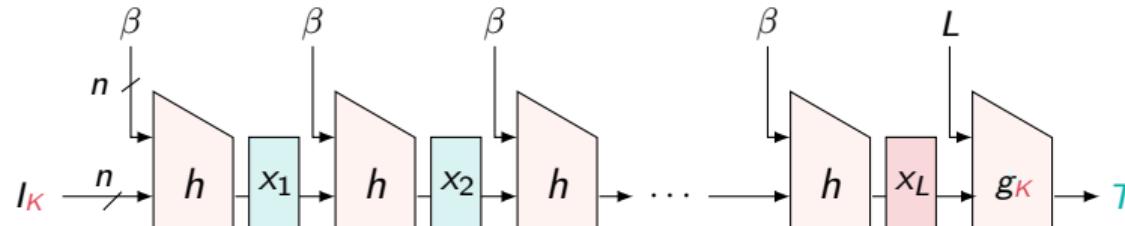
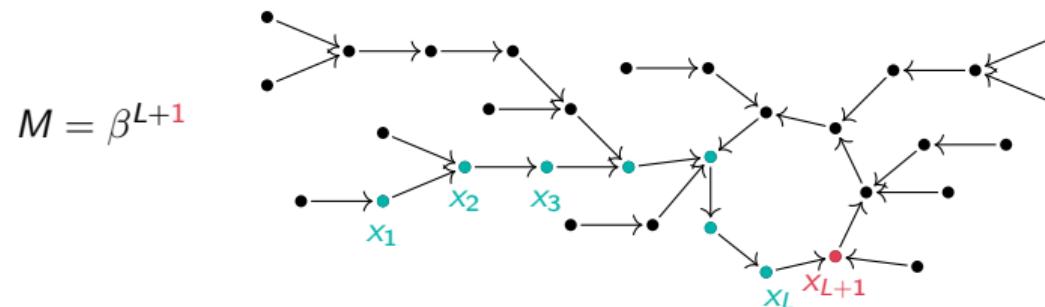
Idea 1: Building two messages who reach the same state



$M_1 = \beta^L$ and $M_2 = \beta^{L+\ell}$ reach the same final state.

Two issues: \neq message lengths + the state is not recovered.

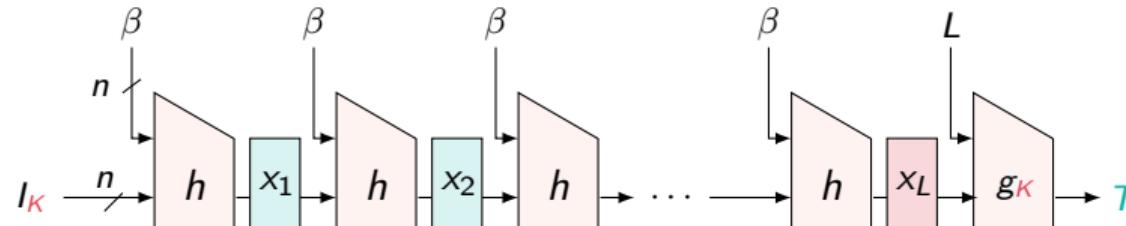
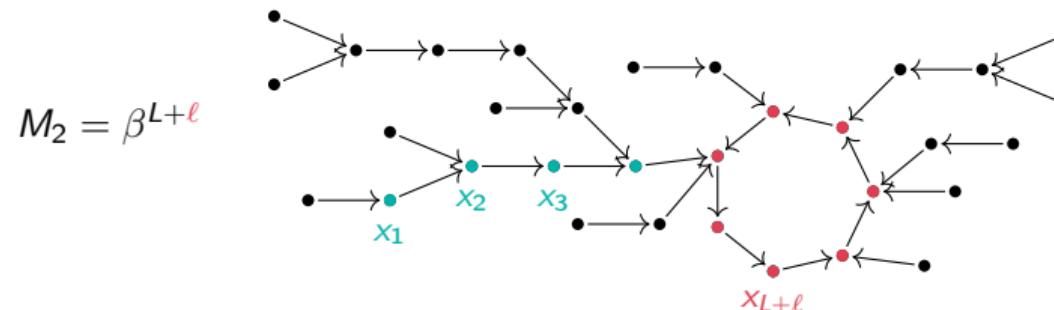
Idea 1: Building two messages who reach the same state



$M_1 = \beta^L$ and $M_2 = \beta^{L+1}$ reach the same final state.

Two issues: \neq message lengths + the state is not recovered.

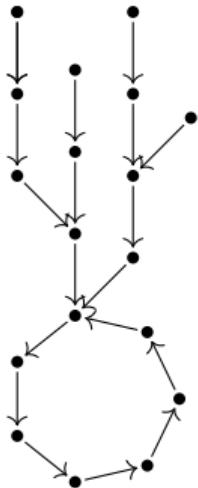
Idea 1: Building two messages who reach the same state



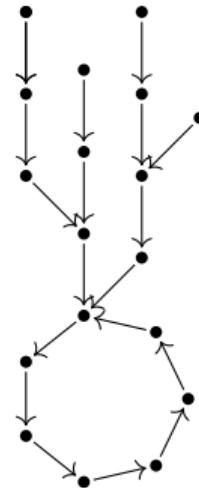
$M_1 = \beta^L$ and $M_2 = \beta^{L+\ell}$ reach the same final state.

Two issues: \neq message lengths + the state is not recovered.

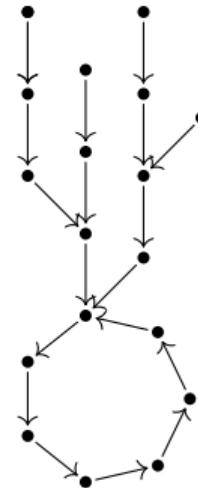
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

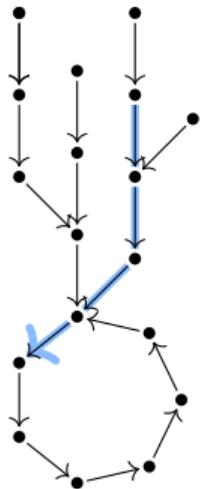


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

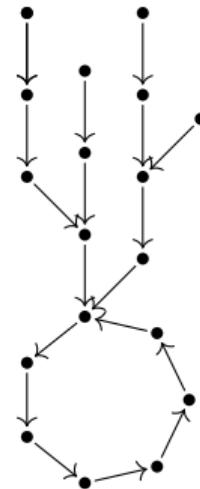
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

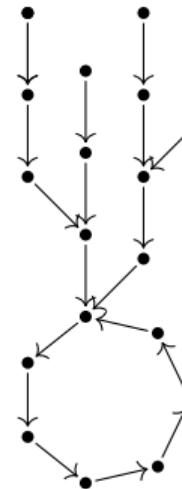
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

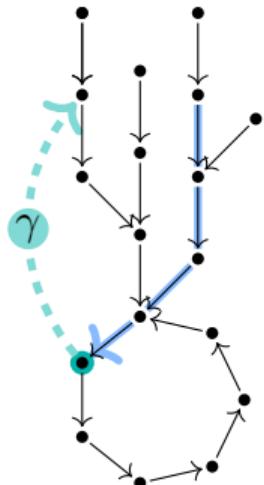


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

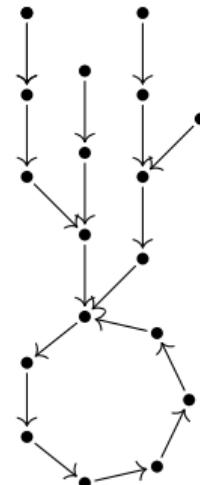
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

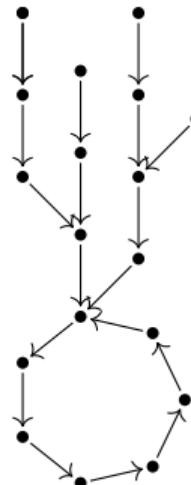
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

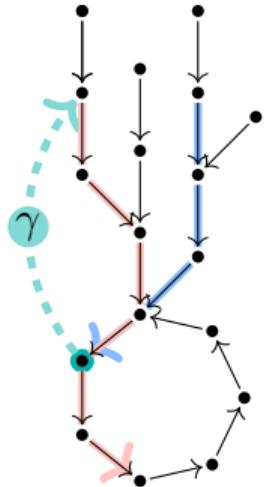


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

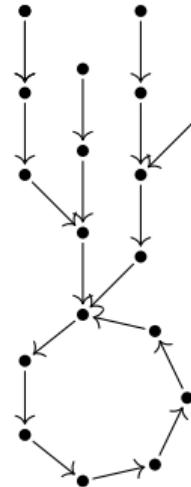
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

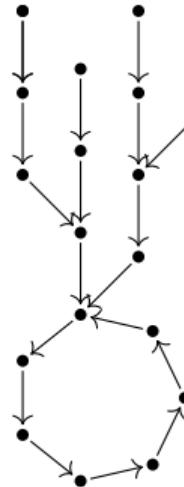
Idea 2: reach the cycle twice



$$M_0 = \beta^L ||\gamma|| \beta^L$$



$$M_1 = \beta^{L+\ell} ||\gamma|| \beta^L$$

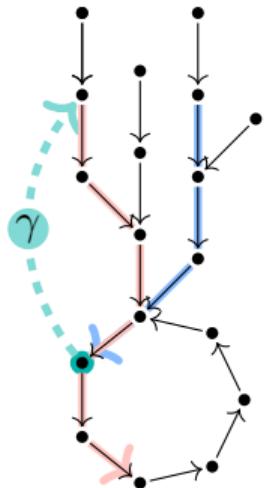


$$M_2 = \beta^L \|\gamma\| \beta^{L+\ell}$$

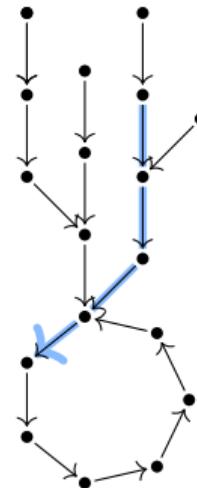
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

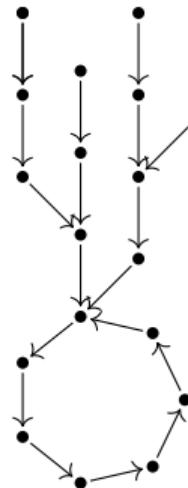
Idea 2: reach the cycle twice



$$M_0 = \beta^L \parallel \gamma \parallel \beta^L$$



$$M_1 = \beta^{L+\ell} \parallel \gamma \parallel \beta^L$$

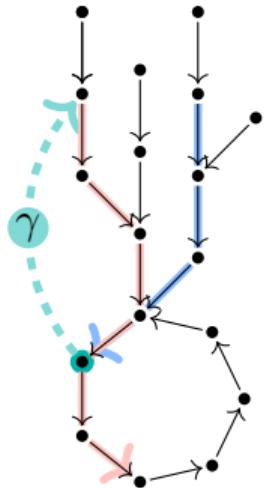


$$M_2 = \beta^L \parallel \gamma \parallel \beta^{L+\ell}$$

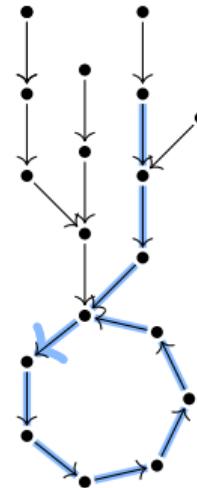
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

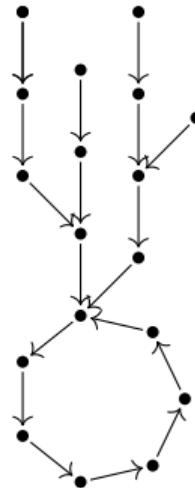
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

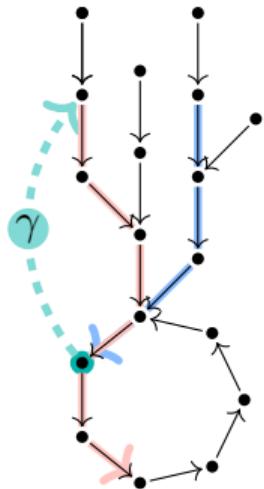


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

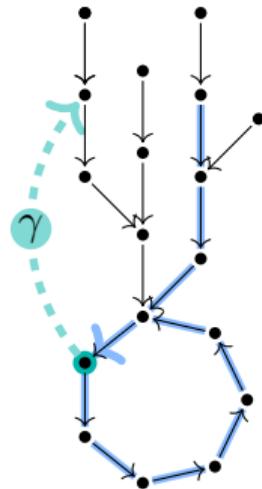
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

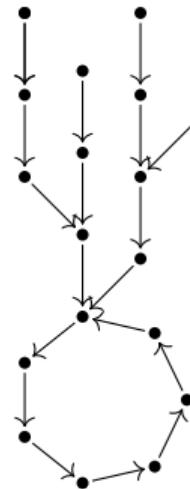
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

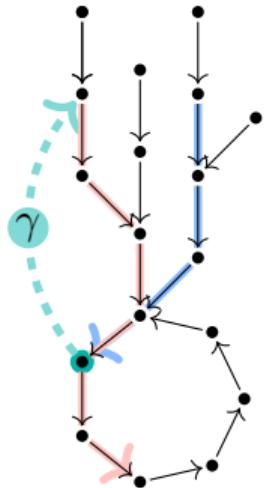


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

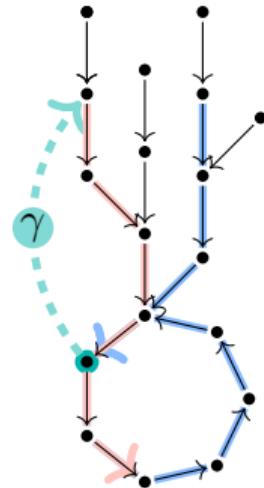
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

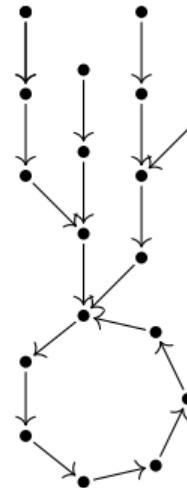
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

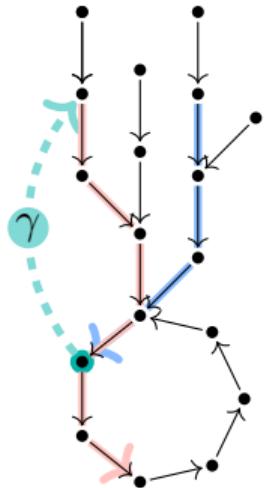


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

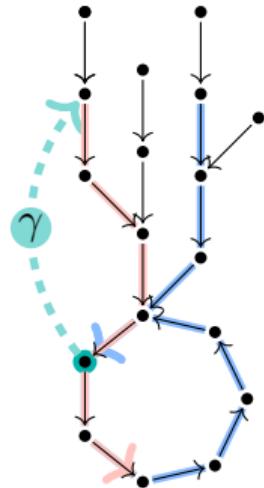
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

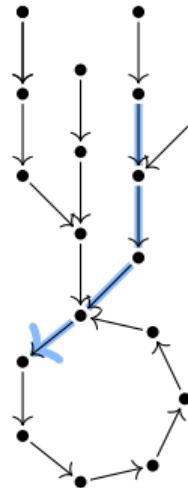
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

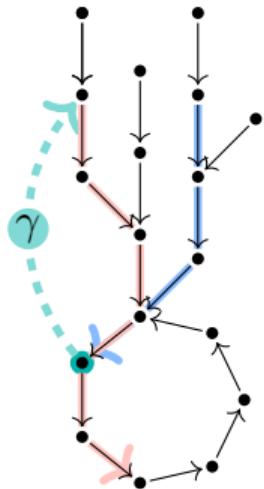


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

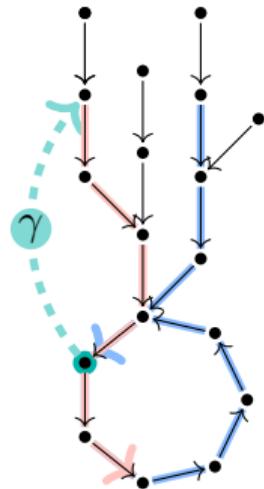
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

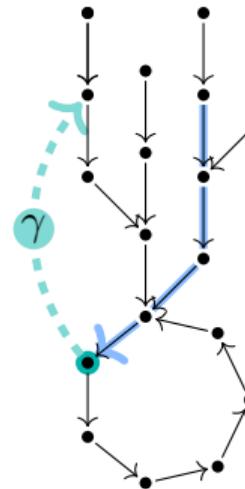
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

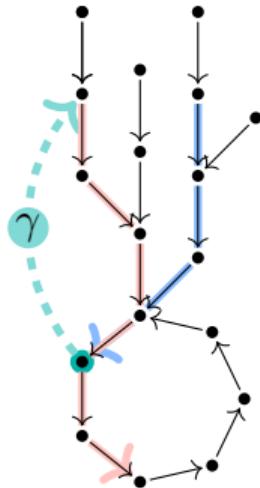


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

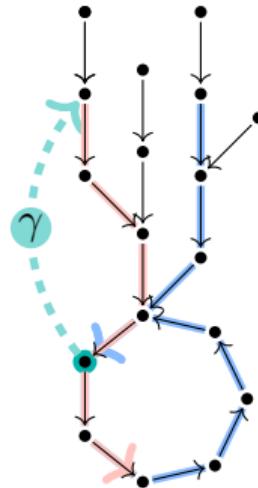
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

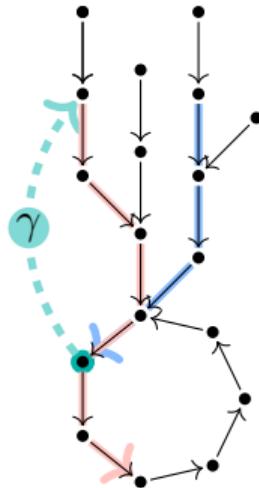
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

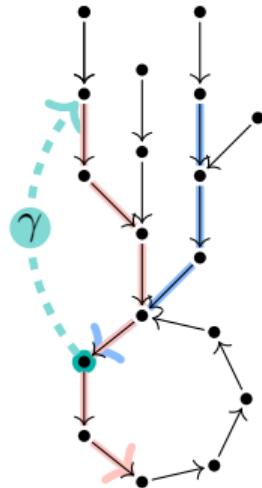


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

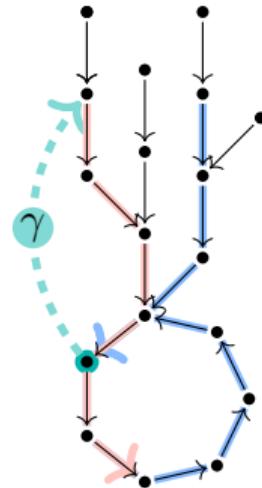
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

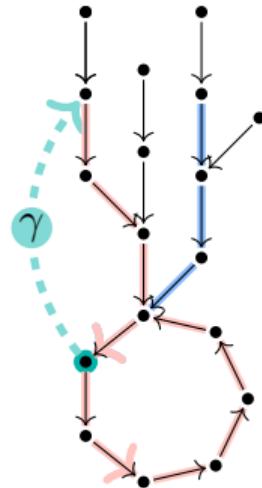
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$

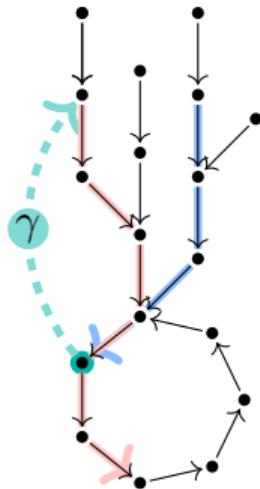


$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

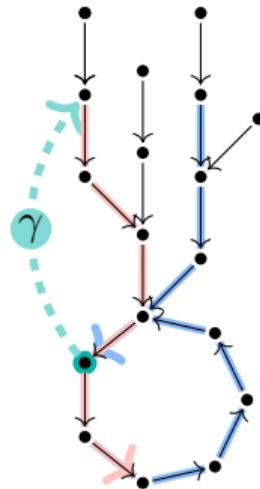
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery.

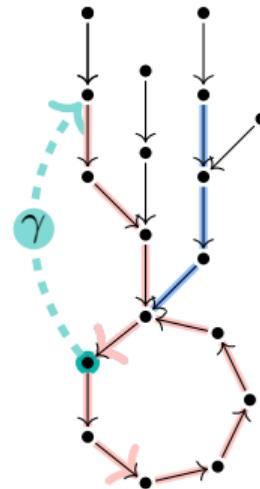
Idea 2: reach the cycle twice



$$M_0 = \beta^L || \gamma || \beta^L$$



$$M_1 = \beta^{L+\ell} || \gamma || \beta^L$$



$$M_2 = \beta^L || \gamma || \beta^{L+\ell}$$

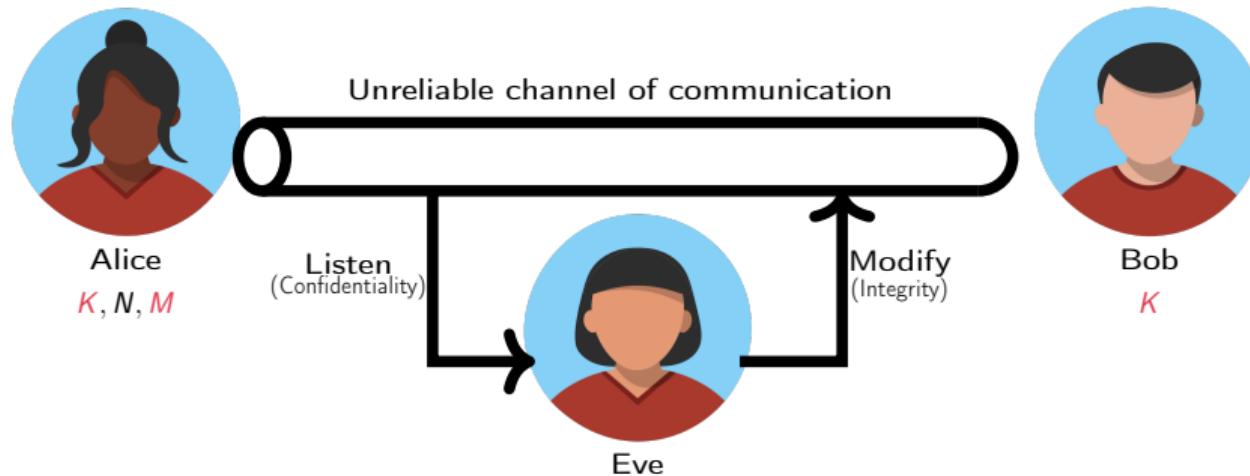
M_1 and M_2 reach the same state with constant probability and $|M_1| = |M_2|$.

Still no state recovery. Idea 3: use the root of the main tree α .

Outline

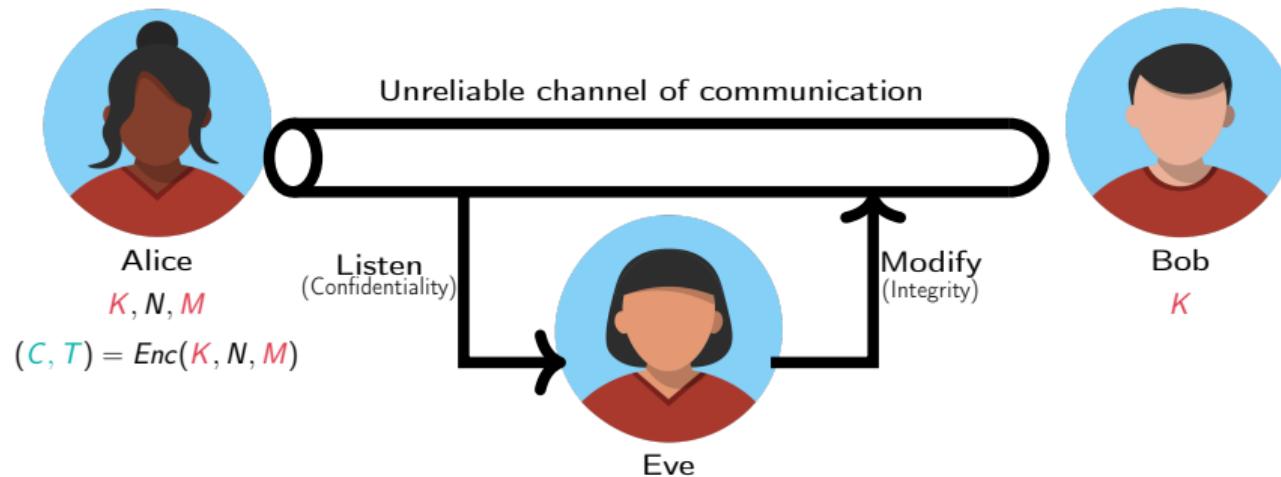
- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes
- 5 Conclusion

Authenticated Encryption



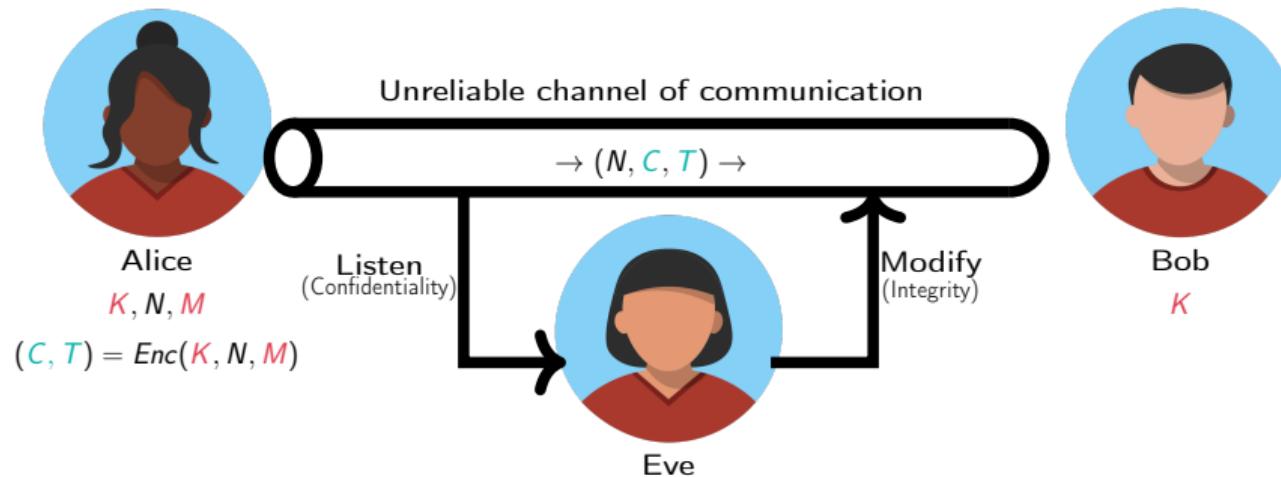
An **authenticated encryption** scheme ensures both the **confidentiality** and **integrity** of communications.

Authenticated Encryption



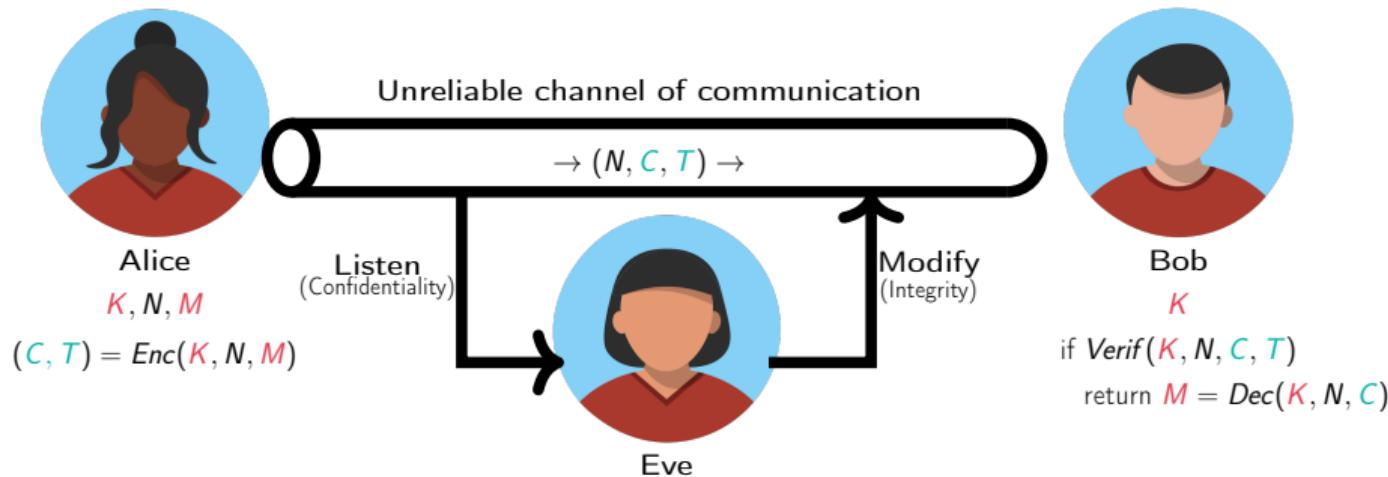
An **authenticated encryption** scheme ensures both the **confidentiality** and **integrity** of communications.

Authenticated Encryption



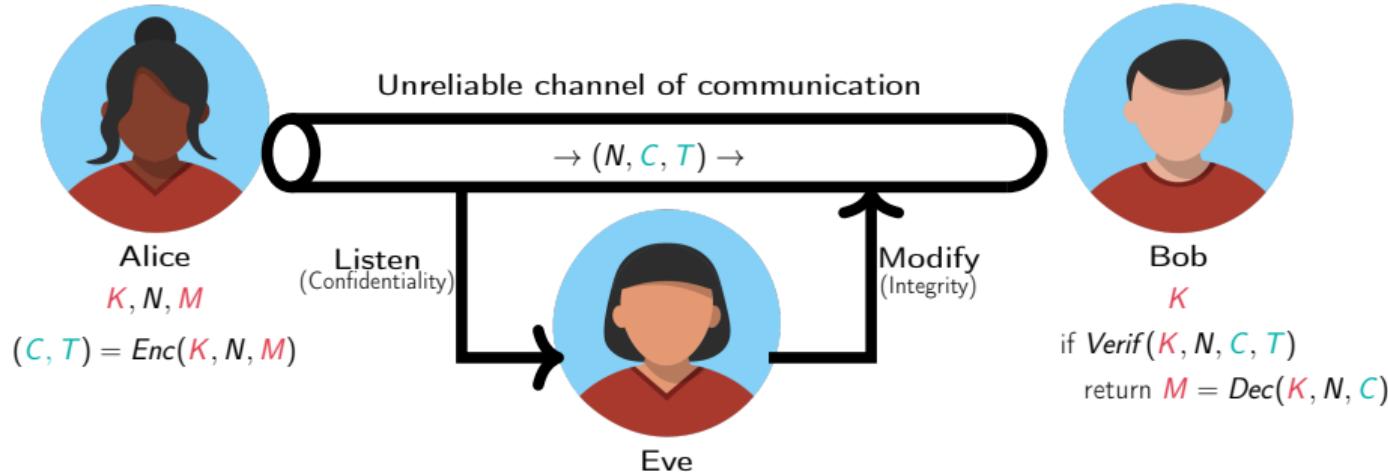
An **authenticated encryption** scheme ensures both the **confidentiality** and **integrity** of communications.

Authenticated Encryption



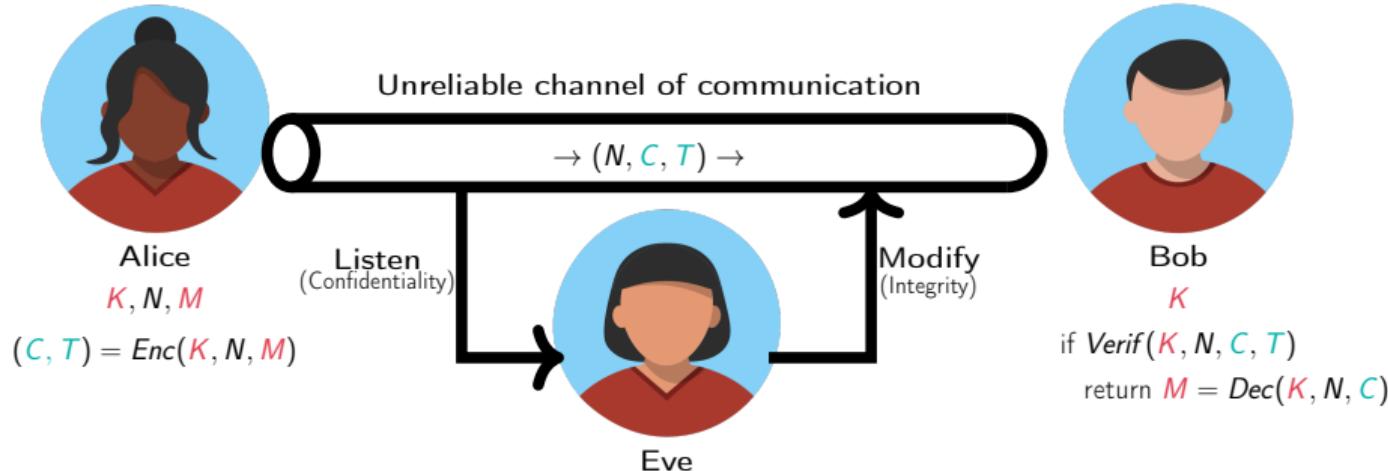
An **authenticated encryption** scheme ensures both the **confidentiality** and **integrity** of communications.

Authenticated Encryption



Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Authenticated Encryption



Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

- Assuming a **nonce-respecting** adversary
- and **no release of unverified plaintext**.

Duplex-based AE modes

Authenticated Encryption

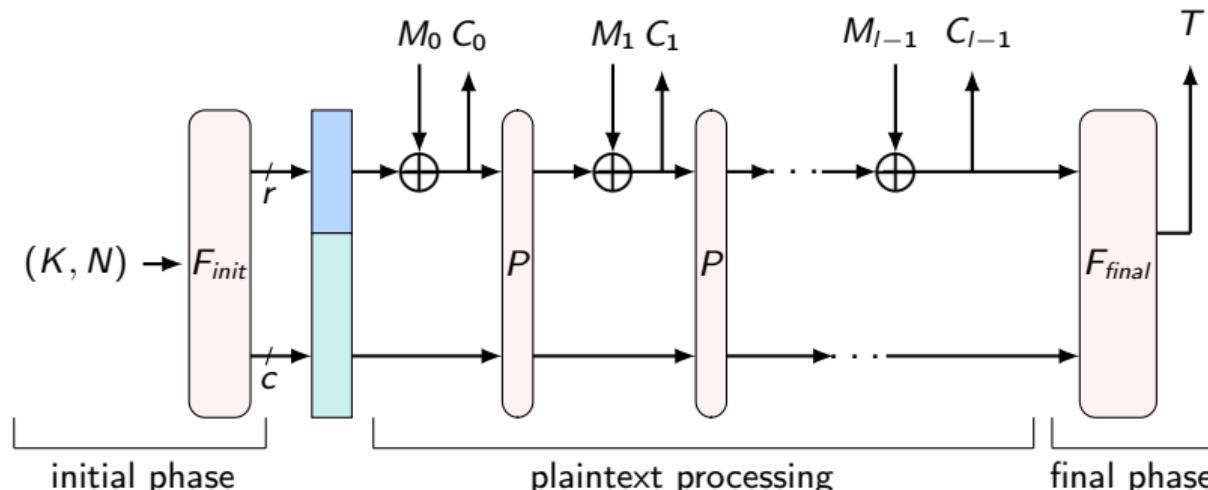
- (Historically) **block-cipher** based: (tweakable) block cipher + mode
- (More recently) **permutation-based**: public permutation + keyed mode

Permutation-based modes of operation [BDPVA11]

- Many candidates at the NIST lightweight competition (2018-2023), including the winner ASCON.
- Modes are proven secure when instantiated with a **random permutation**.
- It is **difficult to assess** in practice → **cryptanalysis**.

Duplex-based AE modes [BDPVA11,DMV17]

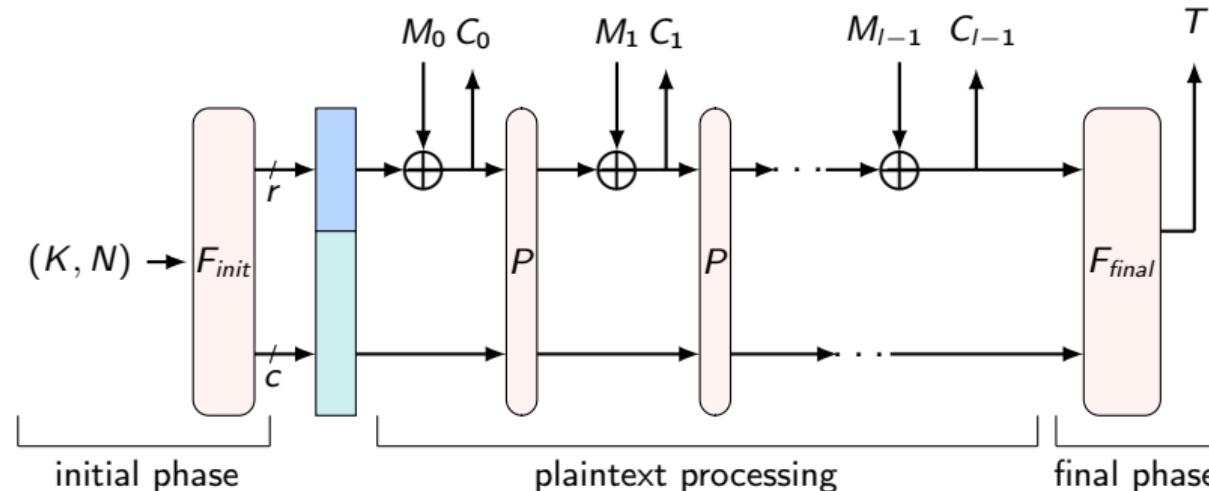
Encryption



- Permutation P operates on a state of length $b = r + c$ bits, r is the **rate**, c the **capacity**.
- First r bits: the **outer state**
Ex: Cyclist (Xoodyak)
- Next c bits: the **inner state**
 $r = 192, c = 192$

Duplex-based AE modes [BDPVA11,DMV17]

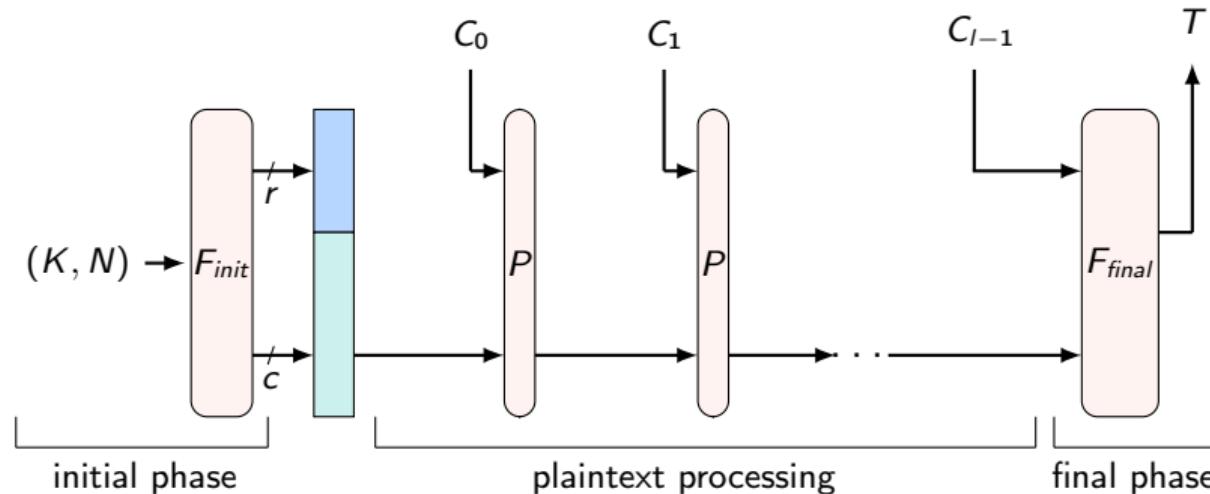
Encryption



Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Duplex-based AE modes [BDPVA11,DMV17]

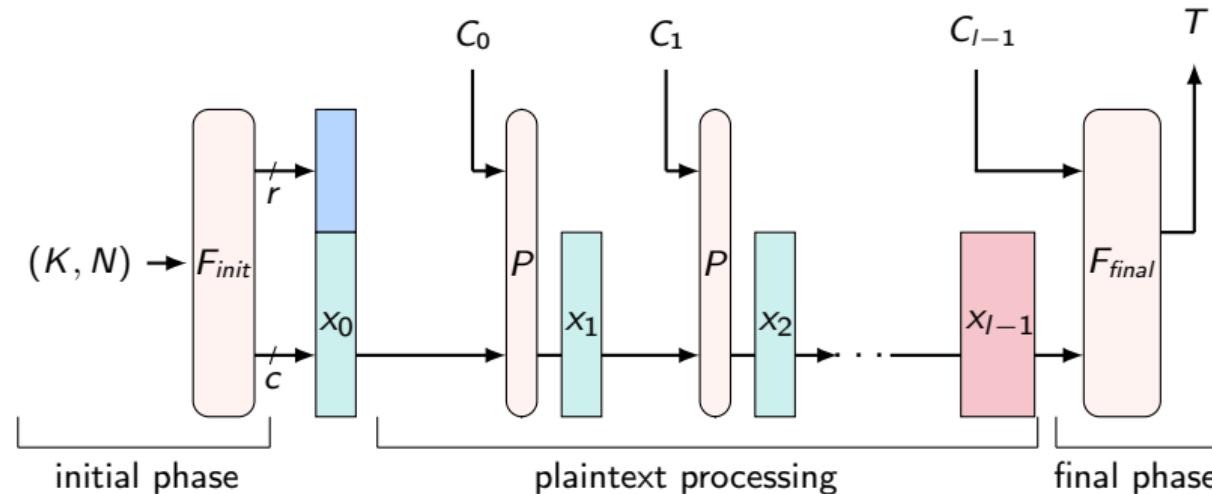
Decryption/verification



Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Duplex-based AE modes [BDPVA11,DMV17]

Decryption/verification



The knowledge of x_{l-1} allows to build a forgery.

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity

$$2^{c/2}$$

$$2^c$$

Provable security

[BDPVA11]

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity

$2^{c/2}$

$2^c/\alpha$

2^c

α : small constant

Security of duplex-based modes

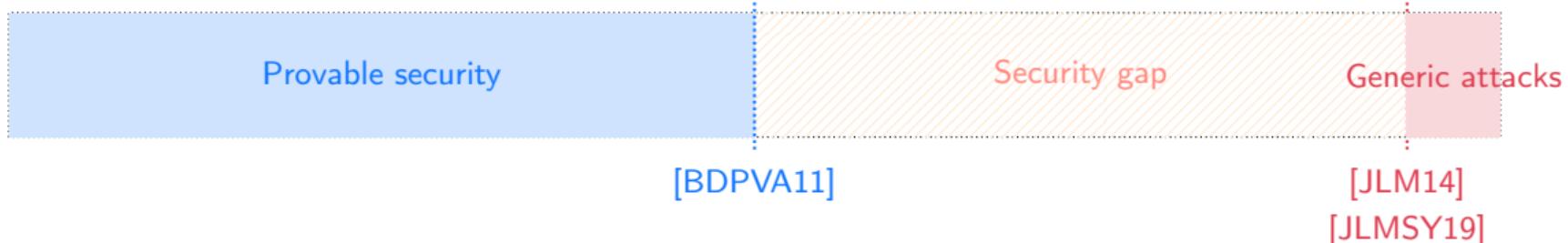
Assuming a sufficiently large key/tag/state length:

Time complexity

$$2^{c/2}$$

$$2^{c/\alpha}$$

$$2^c$$



α : small constant

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity

$$2^{c/2}$$

$$2^c/\sigma_d$$

$$2^c/\alpha \quad 2^c$$

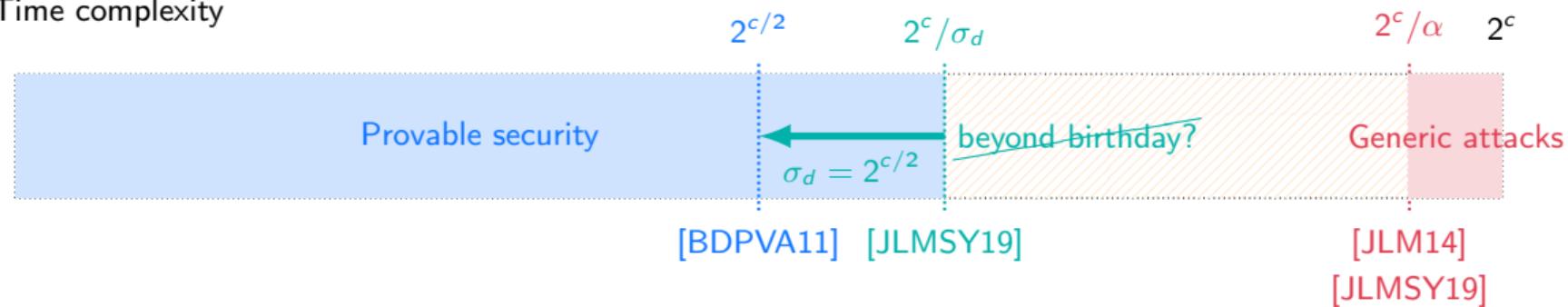
α : small constant

σ_d : number of online calls to P caused by forgery attempts

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity



α : small constant

σ_d : number of online calls to P caused by forgery attempts

Security of duplex-based modes

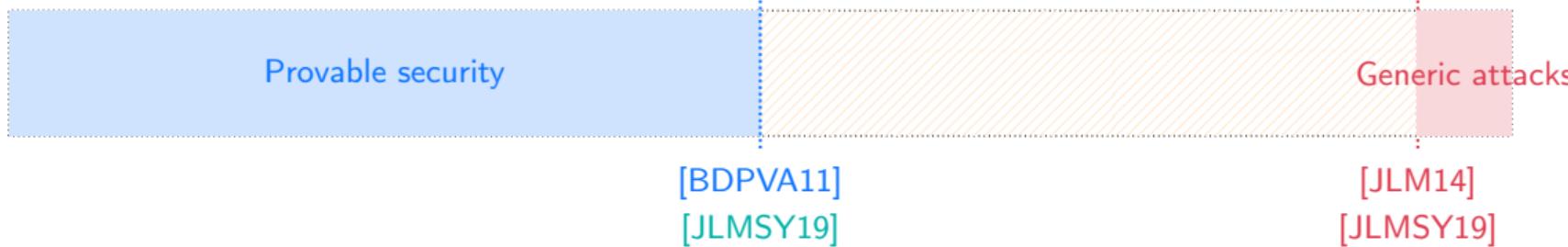
Assuming a sufficiently large key/tag/state length:

Time complexity

$2^{c/2}$

$2^c/\alpha$

2^c



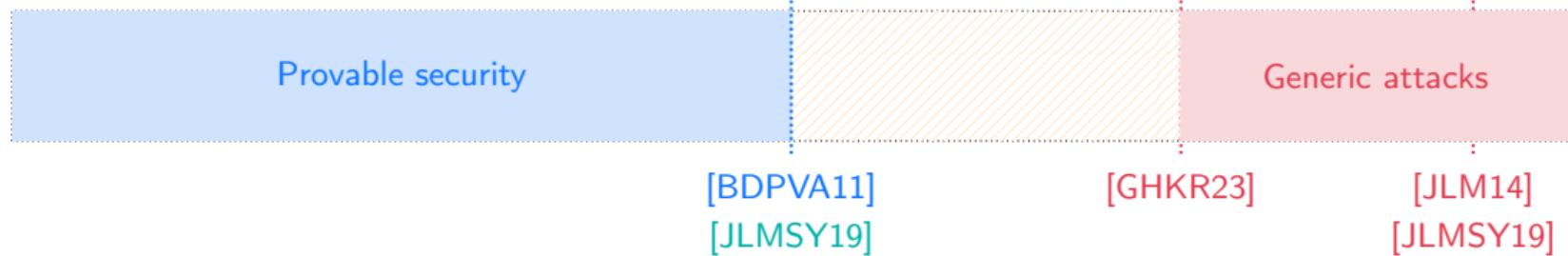
α : small constant

σ_d : number of online calls to P caused by forgery attempts

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity

 $2^{c/2}$
 $2^{3c/4}$
 $2^c/\alpha$
 2^c


α : small constant

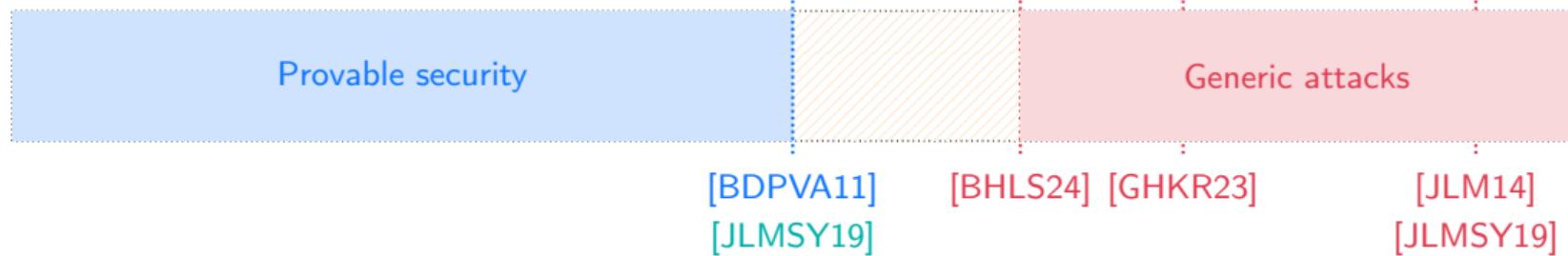
σ_d : number of online calls to P caused by forgery attempts

Generic Attack on Duplex-Based AEAD Modes Using Random Function Statistics. Gilbert, Heim Boissier, Khati, Rotella. **EUROCRYPT 2023**

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity

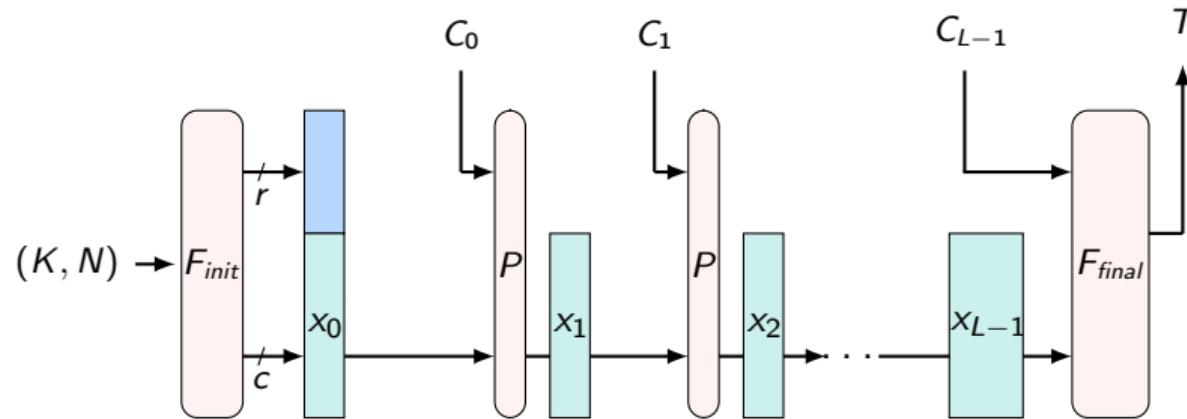
 $2^{c/2}$
 $2^{2c/3}$
 $2^{3c/4}$
 $2^{c/\alpha}$
 2^c


α : small constant

σ_d : number of online calls to P caused by forgery attempts

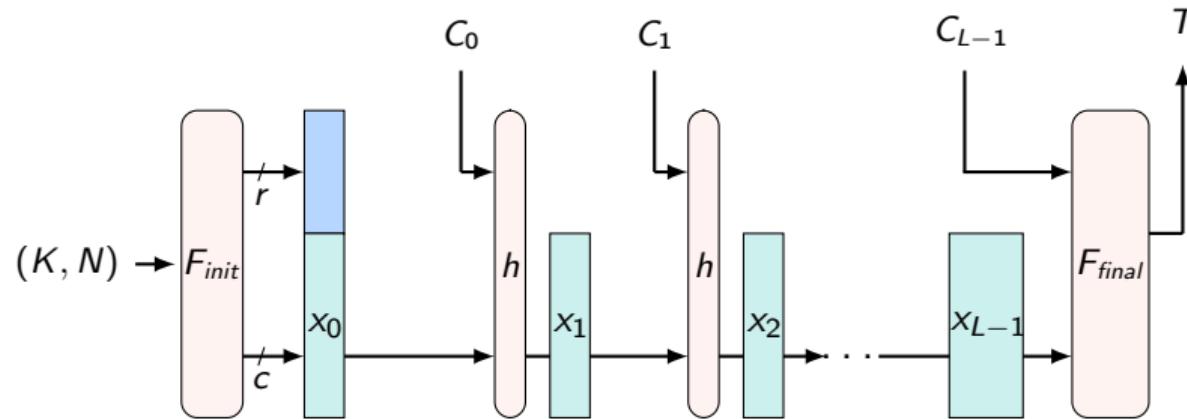
Main observation (1/2)

Verification $(C = C_0 \parallel \dots \parallel C_{L-1}, T)$



Main observation (1/2)

Verification ($C = C_0 \parallel \dots \parallel C_{L-1}, T$)

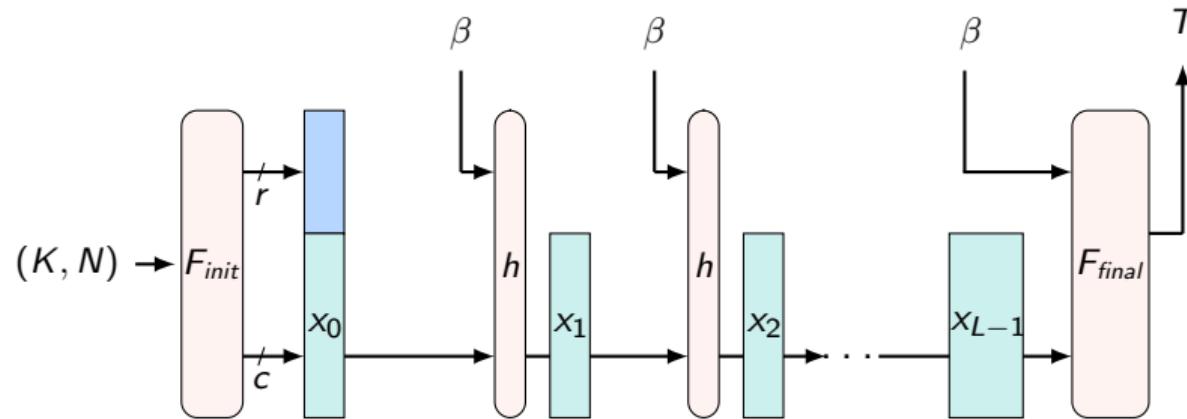


We define a compression function h induced by P :

$$\begin{aligned} h : \mathbb{F}_2^b &\longrightarrow \mathbb{F}_2^c \\ x &\longmapsto [P(x)]_c. \end{aligned}$$

Main observation (1/2)

Verification (β^L, T)

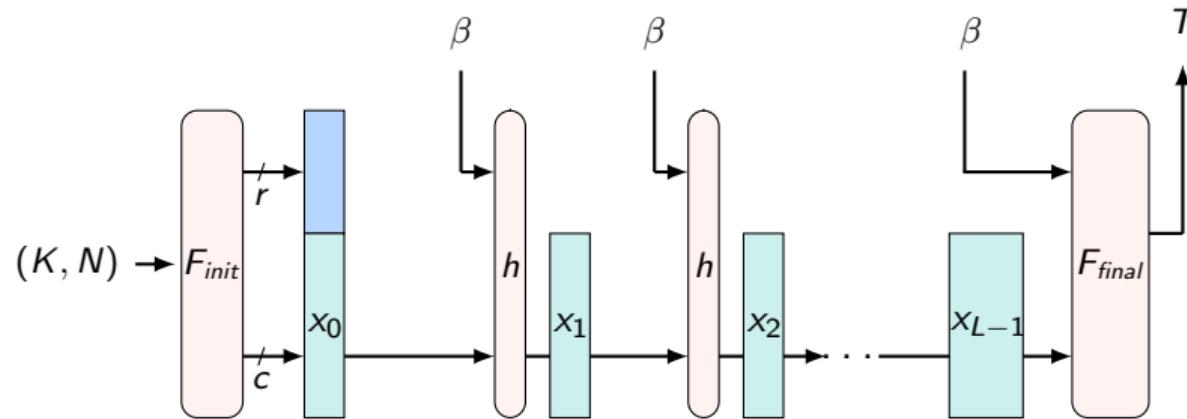


We define a compression function h induced by P :

$$h : \mathbb{F}_2^b \longrightarrow \mathbb{F}_2^c$$
$$x \longmapsto [P(x)]_c.$$

Main observation (1/2)

Verification (β^L, T)

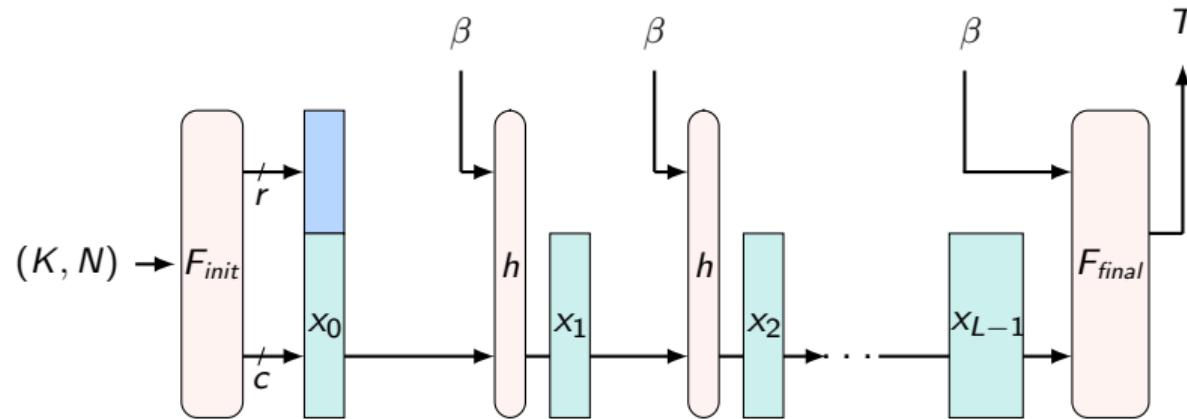


The tag verification iterates the function

$$\begin{aligned} h_\beta : \mathbb{F}_2^c &\longrightarrow \mathbb{F}_2^c \\ x &\longmapsto h(\beta, x). \end{aligned}$$

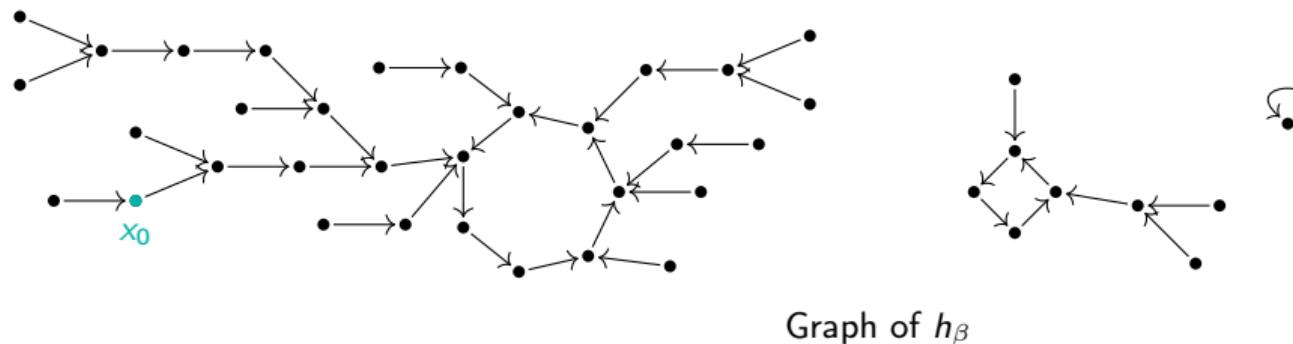
Main observation (1/2)

Verification (β^L, T)

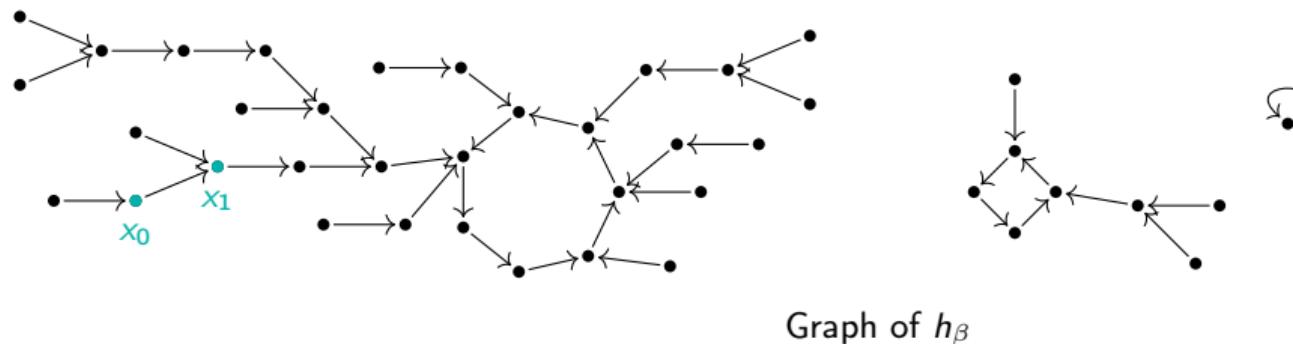
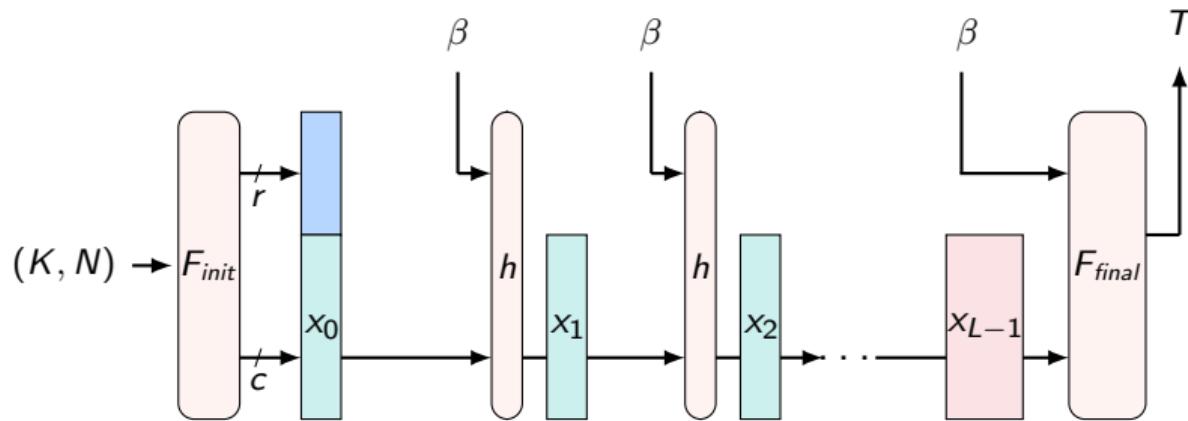


- For a random β , we expect h_β to behave as a **random function** drawn in \mathfrak{F}_{2^c} .
- For each nonce, we expect x_0 to behave as a **random point** drawn in the graph of h_β .

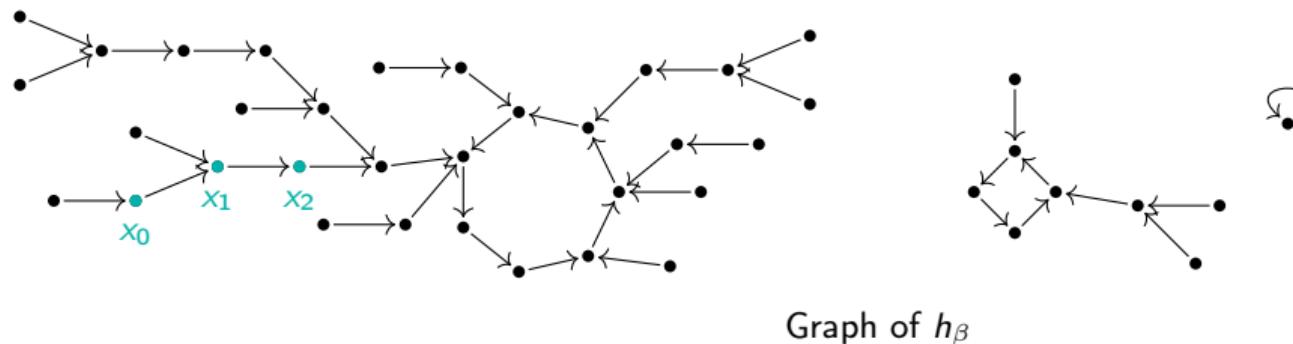
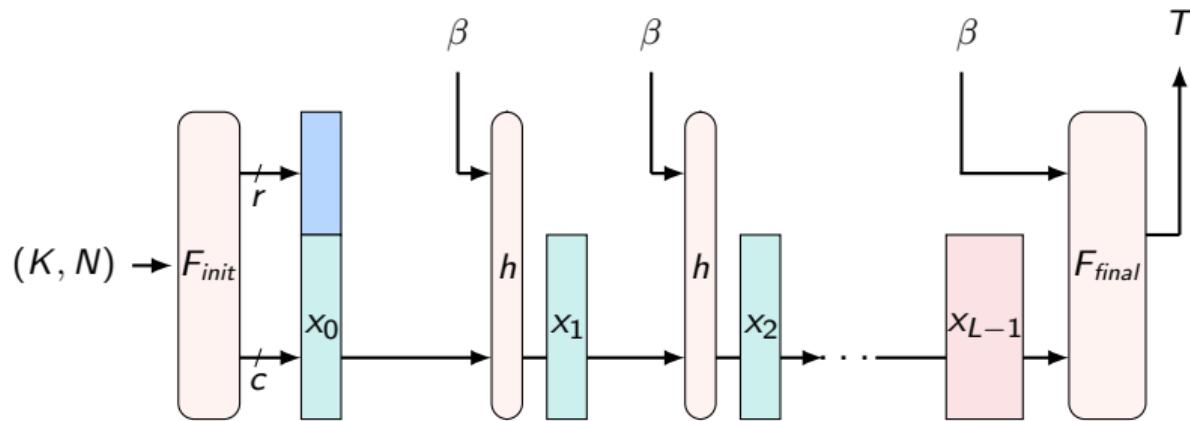
Main observation (2/2)



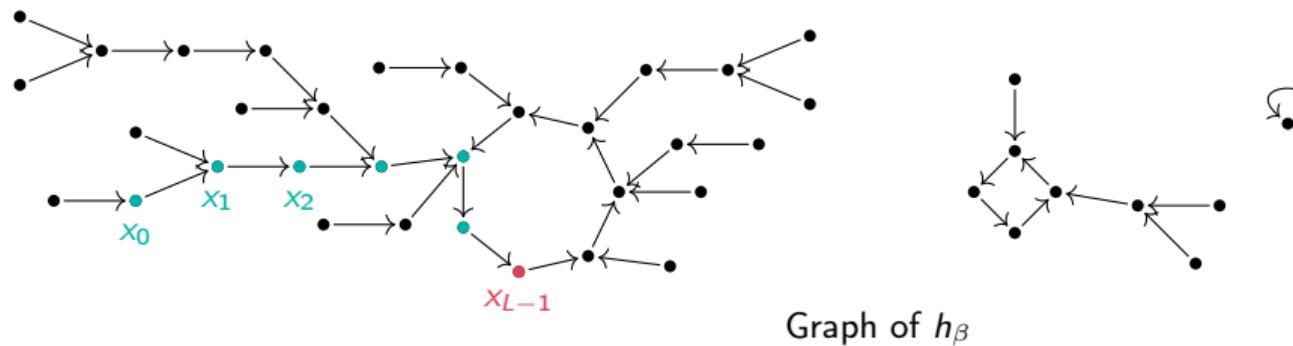
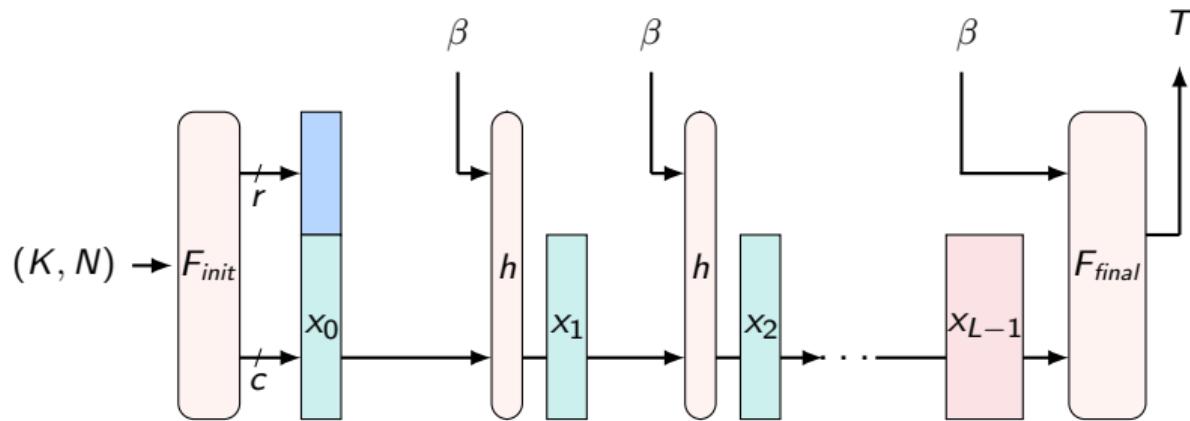
Main observation (2/2)



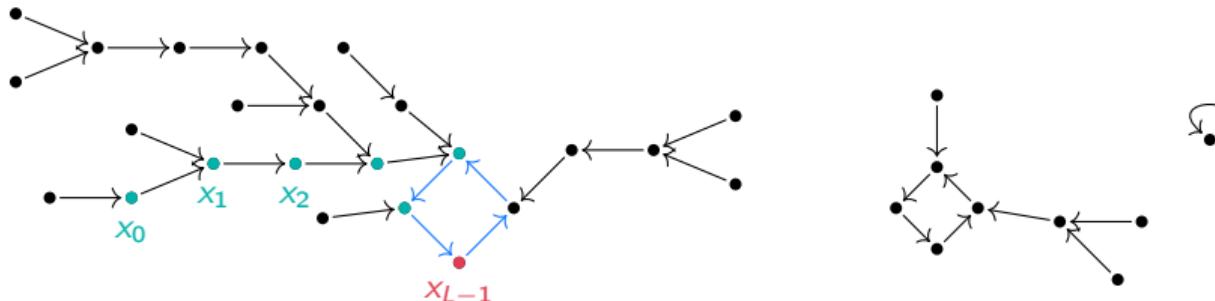
Main observation (2/2)



Main observation (2/2)



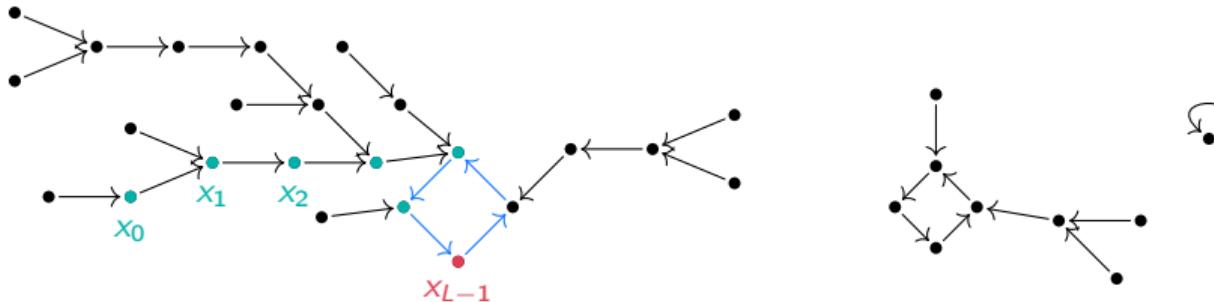
Exceptional functions



Graph of an exceptional h_β

If one finds β s.t. h_β has a reasonably large component (say $\geq 0.65 \cdot 2^c$) with an exceptionally small cycle (say $\leq 2^{\frac{c}{4}}$)...

Exceptional functions

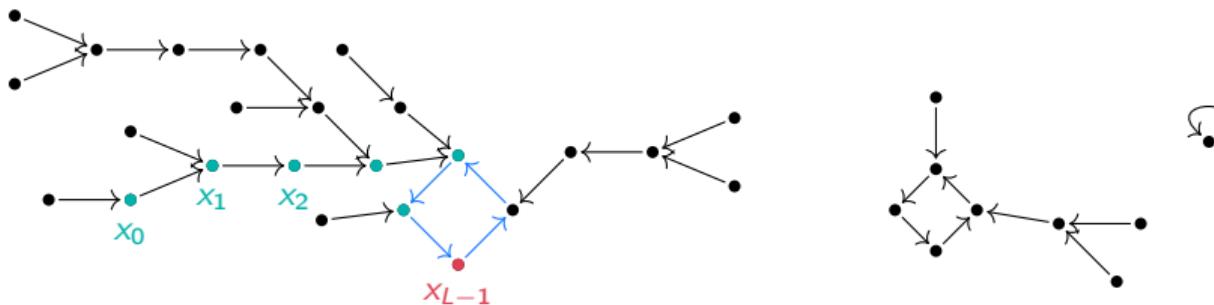


Graph of an exceptional h_β

If one finds β s.t. h_β has a reasonably large component (say $\geq 0.65 \cdot 2^c$) with an exceptionally small cycle (say $\leq 2^{\frac{c}{4}}$)...

- x_0 belongs to the large component with good probability (≥ 0.65).

Exceptional functions

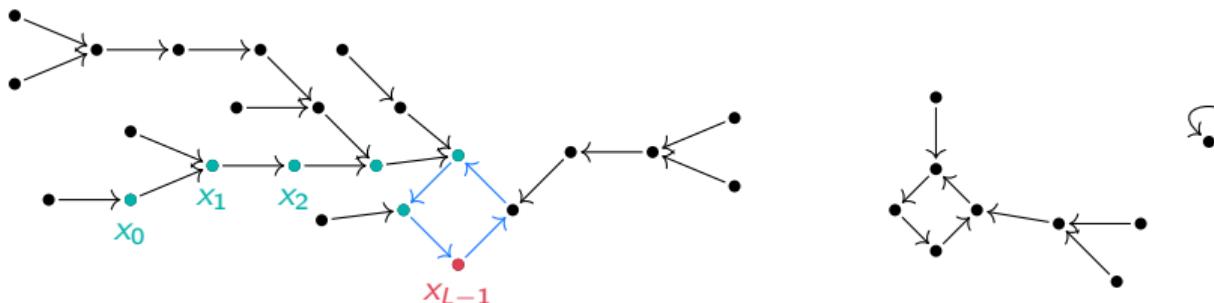


Graph of an exceptional h_β

If one finds β s.t. h_β has a **reasonably large component** (say $\geq 0.65 \cdot 2^c$) with an **exceptionally small cycle** (say $\leq 2^{\frac{c}{4}}$)...

- x_0 belongs to the **large component** with good probability (≥ 0.65).
- If so, if L is 'large enough' ($L = cst \cdot 2^{\frac{c}{2}}$), x_{L-1} is in the **small cycle** with good probability.

Exceptional functions

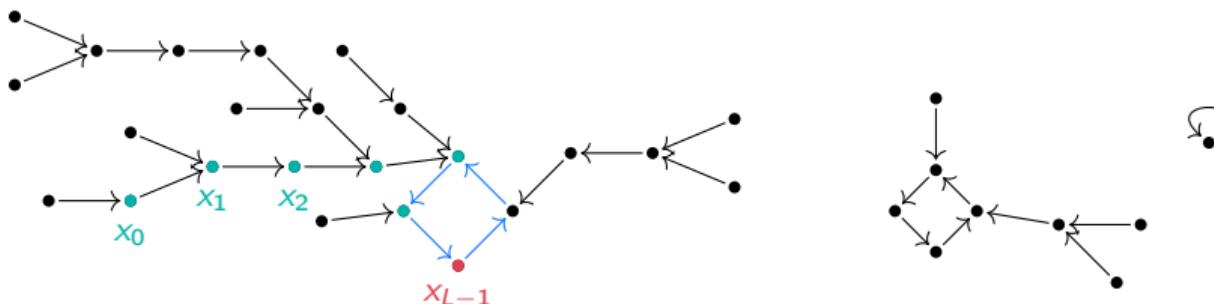


Graph of an exceptional h_β

If one finds β s.t. h_β has a **reasonably large component** (say $\geq 0.65 \cdot 2^c$) with an **exceptionally small cycle** (say $\leq 2^{\frac{c}{4}}$)...

- x_0 belongs to the **large component** with good probability (≥ 0.65).
- If so, if L is 'large enough' ($L = cst \cdot 2^{\frac{c}{2}}$), x_{L-1} is in the **small cycle** with good probability.
- If so, there are at most $2^{\frac{c}{4}}$ possible values for x_{L-1} ; i.e., **at most $2^{\frac{c}{4}}$ possible tags**.

Exceptional functions

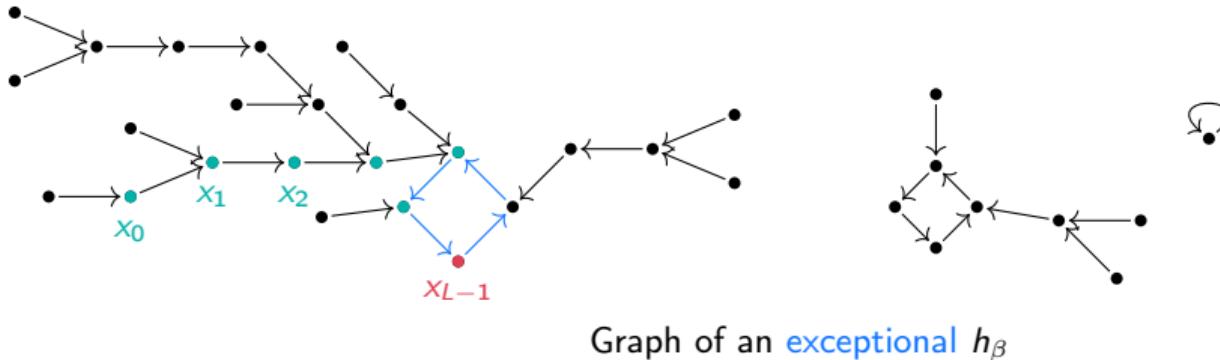


If one finds β s.t. h_β has a **reasonably large component** (say $\geq 0.65 \cdot 2^c$) with an **exceptionally small cycle** (say $\leq 2^{\frac{c}{4}}$)...

- x_0 belongs to the **large component** with good probability (≥ 0.65).
- If so, if L is 'large enough' ($L = cst \cdot 2^{\frac{c}{2}}$), x_{L-1} is in the **small cycle** with good probability.
- If so, there are at most $2^{\frac{c}{4}}$ possible values for x_{L-1} ; i.e., **at most $2^{\frac{c}{4}}$ possible tags**.

Resulting forgery attack: (1) precompute an exceptional h_β and (2) try the $\leq 2^{\frac{c}{4}}$ possible values for T .

A new statistic



[DeLaurentis87]: Probability that a h_β has a component s.t.

- (exceptionally small cycle) $\ell \leq 2^\mu$ (e.g. $\ell \leq 2^{-c/4}$);
- (reasonably large size) of size $\geq 2^c \cdot s$ (e.g. size $\geq 0.65 \cdot 2^c$):

$$p_{s,\mu} \approx \sqrt{2(1-s)/\pi s} \cdot 2^{\mu - \frac{c}{2}} \quad (\text{e.g. } 0.6 \cdot 2^{-\frac{c}{4}}).$$

Forgery attack [GKHR23]

1 **Precomputation phase:** Find β s.t. h_β has a **large component** ($\geq 0.65 \cdot 2^c$) with an exceptionally **small cycle** ($\leq 2^\mu$) and recover this cycle.

- For random β 's,
 - Recover the cycle length using Brent's algorithm.

candidates for $\beta \approx 1/p_{s,\mu} \approx 2^{\frac{c}{2}-\mu}$
complexity $\approx 2^{\frac{c}{2}}$ applications of h

Total complexity: $\approx 2^{c-\mu}$ applications of h .

2 **Online phase:** Submit $(N, C = \beta^L, T)$ queries where $T = F_{final}(\beta || \textcolor{teal}{x})$, $\textcolor{teal}{x}$ in the cycle.

- Set $L = 3 \cdot 2^{\frac{c}{2}}$ so that x_{L-1} in the cycle with good probability
- At most 2^μ possible values for T .

Total complexity: $\approx 2^{\frac{c}{2}+\mu}$ applications of h .

Balanced complexity: $2^{\frac{3c}{4}}$

Summary of our results

Beyond an asymptotic result

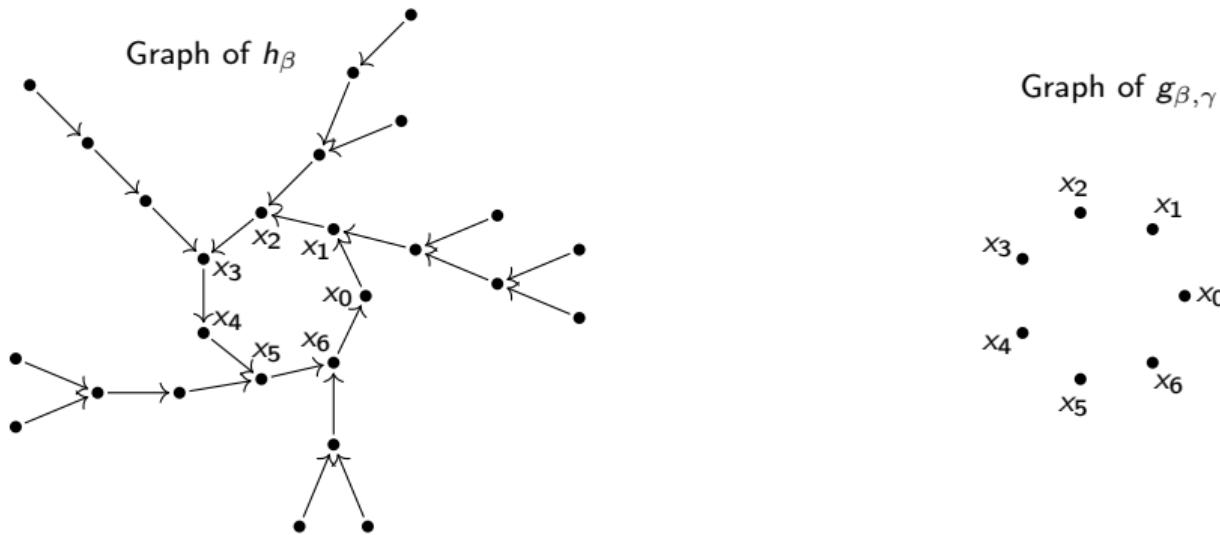
- Total time complexity: $\leq 21 \cdot 2^{\frac{3c}{4}}$.
- Probability of success: $\geq 95\%$.
- NB: almost always a **key recovery** (since forgery \rightarrow state recovery \rightarrow key recovery).

Applications

- Modes of Norx v2, Ketje, KNOT and Keyak;
- Attack of complexity 2^{148} on **Xoodyak**
 - Breaks a **184-bit security claim** (corrected since).

A new improvement [B HLS24]

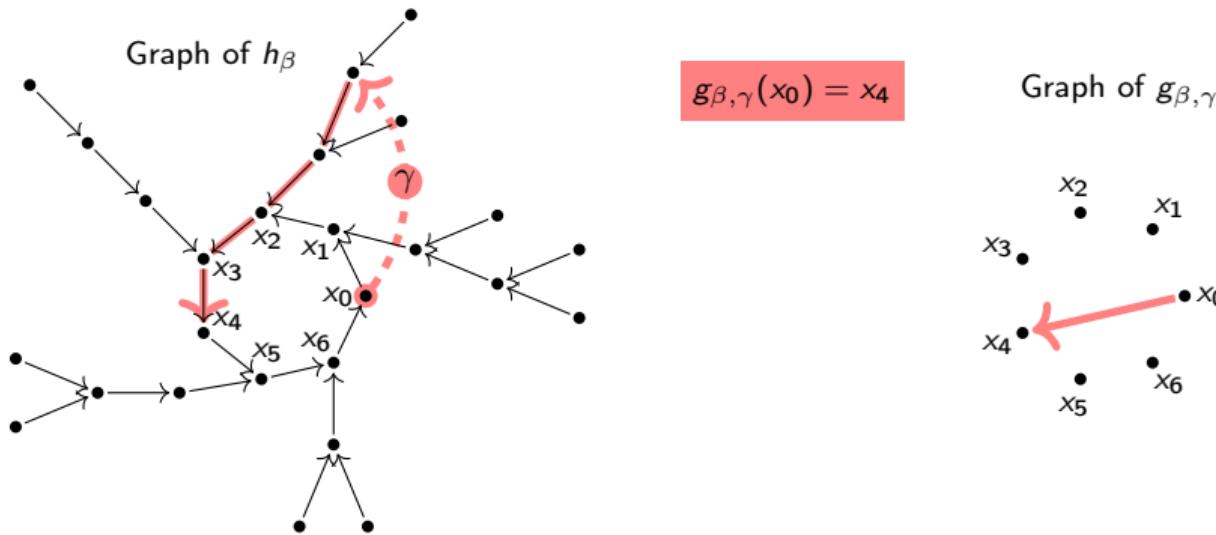
Define a **nested function** $g_{\beta, \gamma}$ from the cycle \mathcal{C} of h_β to itself.



$$g_{\beta, \gamma} = h_\beta^L \circ h_\gamma : x \in \mathcal{C} \mapsto x' \in \mathcal{C} \text{ with good probability.}$$

A new improvement [B HLS24]

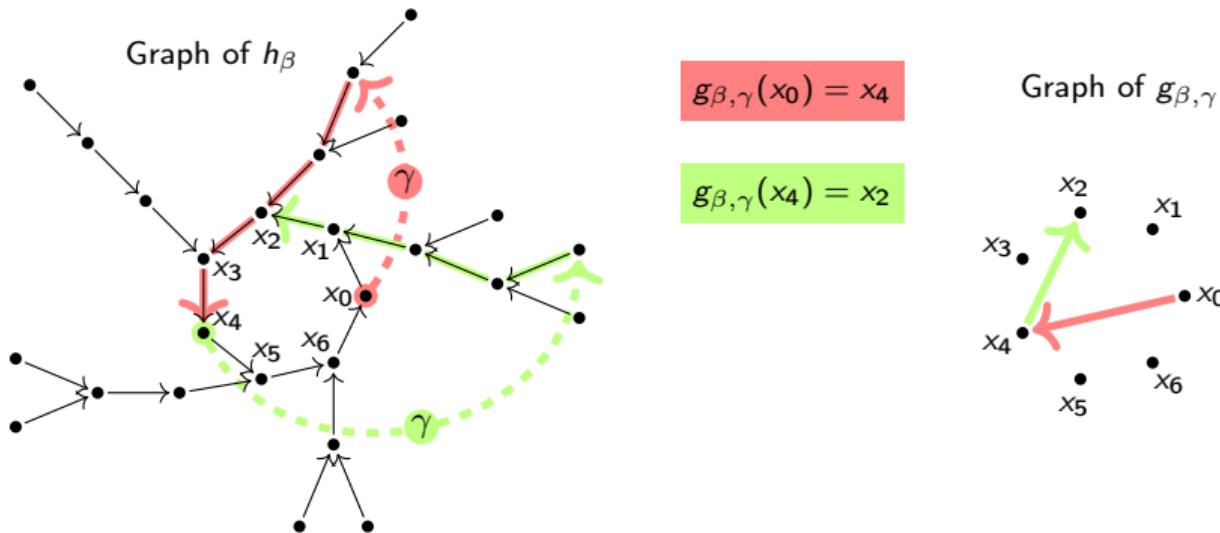
Define a **nested function** $g_{\beta, \gamma}$ from the cycle \mathcal{C} of h_β to itself.



$$g_{\beta, \gamma} = h_\beta^L \circ h_\gamma : x \in \mathcal{C} \mapsto x' \in \mathcal{C} \text{ with good probability.}$$

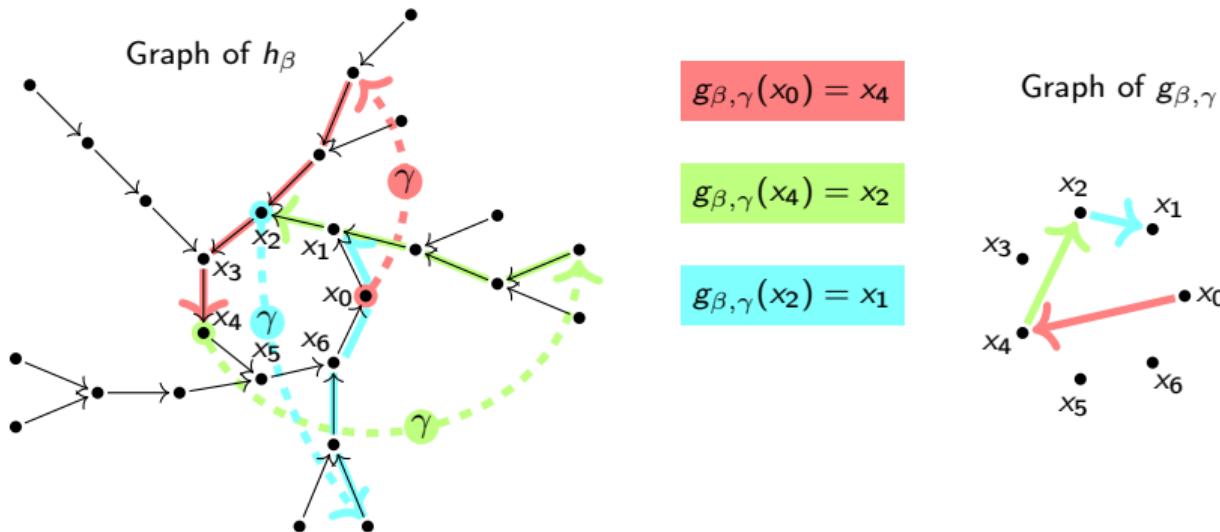
A new improvement [B HLS24]

Define a **nested function** $g_{\beta, \gamma}$ from the cycle \mathcal{C} of h_β to itself.



A new improvement [BHLS24]

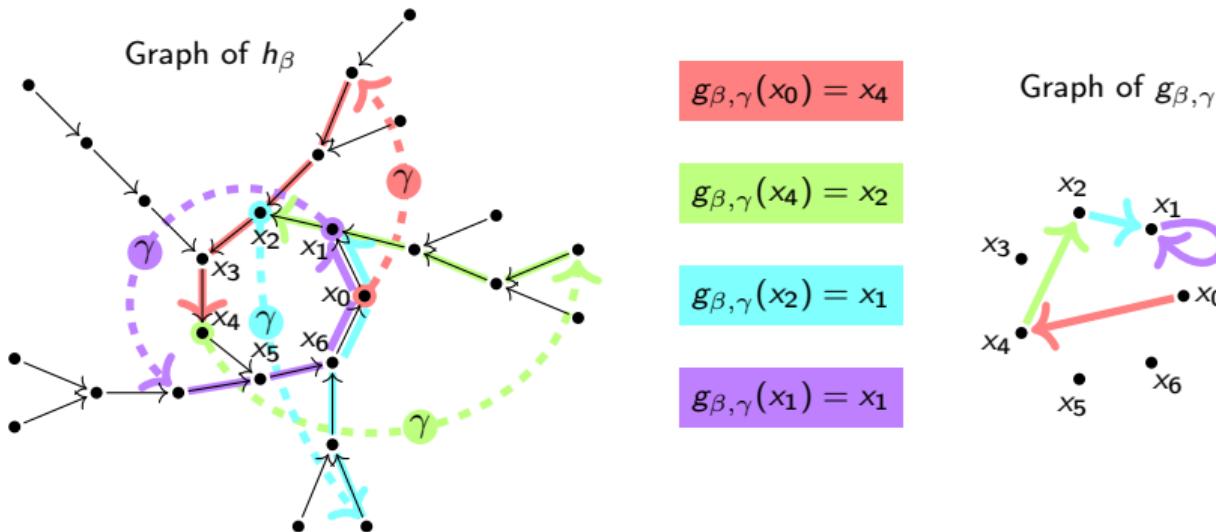
Define a **nested function** $g_{\beta, \gamma}$ from the cycle \mathcal{C} of h_β to itself.



$$g_{\beta, \gamma} = h_\beta^L \circ h_\gamma : x \in \mathcal{C} \mapsto x' \in \mathcal{C} \text{ with good probability.}$$

A new improvement [B HLS24]

Define a **nested function** $g_{\beta, \gamma}$ from the cycle \mathcal{C} of h_β to itself.



$$g_{\beta, \gamma} = h_\beta^L \circ h_\gamma : x \in \mathcal{C} \mapsto x' \in \mathcal{C} \text{ with good probability.}$$

Nesting exceptional functions [BHLS24]

1 Find β s.t. h_β is exceptional.

- Let $2^\mu \ll 2^{c/2}$ be the cycle length of h_β .

2 Find γ s.t. $g_{\beta,\gamma}$ is exceptional.

- For a random γ , $g_{\beta,\gamma}$ has cycle length $2^{\mu/2} \ll 2^{c/4}$.
- Let $2^\nu (\ll 2^{c/4})$ be the cycle length of the exceptional $g_{\beta,\gamma}$.

3 One must only try 2^ν tags, but the ciphertexts are a lot longer.

For $\mu = 2c/7$ and $\nu = c/14$, the balanced total complexity is $2^{5c/7} < 2^{3c/4}$.

Our best attack against duplex-based modes has complexity $2^{2c/3}$.

- It uses precomputations in the graph of h_β .

Other contributions [BHLS24]

- Generic attacks against **hash combiners** using (nested) exceptional functions.
- Historically, those attacks use a bunch of **cryptanalytic tools**.
 - Joux's multi-collisions, Diamond structure, Expandable messages,...
- Using (classical) **exceptional functions**, we improve the **best existing attacks** against
 - **XOR Combiner.** $M \mapsto H_1(M) \oplus H_2(M)$ (preimage);
 - **Zipper Hash.** $M \mapsto H_2(H_1(\text{IV}, M), \overleftarrow{M})$ (second preimage);
 - **Hash-Twice.** $M \mapsto H_2(H_1(\text{IV}, M), M)$ (second preimage, second preimage quantum).

Outline

- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes
- 5 Conclusion

Key take-aways

Functional graphs have many applications in generic cryptanalysis.

Our contribution [GKHR23,BHLS24]

- Showing the applicability of functional graph techniques to AE modes.
- First use of exceptional behaviour of random functions.
- Bridging the gap between provable security and practical attacks.
 - A variant of our attack w/ computational complexity $O(2^c)$ is 'tight'. [Lef24]
- Beyond asymptotic results: break of a security assumption of Xoodyak.
- Improving a long series of attacks on hash combiners.

Perspectives and fun follow-up questions

Fully specified primitives

- Finding exceptional functions on **real-life permutations** using their specification.
- Building a **backdoor** permutation that ‘looks’ secure, but with a known exceptional function.

Overall goal: Bridging the gap between provable security and cryptanalysis.

- What about the quantum setting?

Removing residual heuristics

- Heuristic assumptions on the distribution of $t(x_0)$ for x_0 in an exceptional component.
- Experimentally verified.

Thank you for your attention!