B UCLouvain

Generic attacks using random functions statistics

Rachelle Heim Boissier

Université Catholique de Louvain
Nov. 2025

Symmetric cryptology

Symmetric cryptology studies algorithms allowing two entities that share a common secret, the
key K, to communicate in a secure manner*

& Unreliable channel of communication Q

Alice Listen Modify Bob
(Confidentiality) (Integrity)

shared secret K shared secret K

Eve

Generic attacks using random functions statistics 1/42

Symmetric cryptology

Symmetric cryptology studies algorithms allowing two entities that share a common secret, the
key K, to communicate in a secure manner*

*... as well as some ‘keyless’ algorithms such as hash functions.

& Unreliable channel of communication Q

Alice Listen Modify Bob
(Confidentiality) (Integrity)

shared secret K shared secret K

Eve

Generic attacks using random functions statistics 1/42

Building symmetric algorithms

Cryptography relies on building blocks called primitives used within modes of operation or
constructions to build more complex algorithms.

Mode/construction
E >

Primitive Symmetric algorithm

m The notion of primitive is relative.

m Most primitives do not provide a standalone cryptographic mechanism on their own.

Generic attacks using random functions statistics 2/ 42

Primitives

X
m A block cipher of key size k bits and block size n bits is a function ni
E : F5xF3 — F3 K A E
(K, X) +— E(K,X)
such that for any key K, Ex(:) := E(K,) is a permutation of F5. n%
Y
X
n}
m A public permutation P over F5 does not depend on a key. p
g
Y

Generic attacks using random functions statistics 3/ 42

Modes/constructions

m Block cipher-based

Ex: the encryption mode CBC. T
444444

Y_1 Yo Y1 Y2 Yio1
m Permutation-based
Xo X X Xs LY, vy Ya
0"~ b D & i T T
. . |
Ex: the sponge construction for hashing. p P p pl p p
o°])
U U U U U
|

Generic attacks using random functions statistics 4 /42

Security in cryptography (1/2)

Two main approaches:

m Provable security: reducing the security of a scheme to some ‘reasonable’ assumption.

m How do we assess the reasonability of our assumption?

m Cryptanalysis: security analysis effort.

m If the international cryptographic community cannot break it, then, hopefully, noone else can.
B International standardisation competitions organised by the NIST.

m The cryptanalysis effort should be global, continuous and comprehensive.

Generic attacks using random functions statistics 5/ 42

Security in cryptography (2/2)

Primitive security

m can only be guaranteed through cryptanalysis.

Mode/construction security
m Proved under the assumption that the primitive is secure.
m Proofs provide a partial information on the security level.

m Cryptanalysis, and in particular generic attacks, provides a complementary point of view.

A generic attack assumes an ideal behaviour of the underlying primitive.

Elementary ex: generic key recovery attack on E given X and Y = Ex(X).

m Exhaustively try the 2" possible secret keys.

Generic attacks using random functions statistics 6 /42

This talk

m Symmetric cryptanalysis.
m Generic attacks against a variety of iterated constructions:

m Hash functions;
m Message Authentication Codes (MAC) modes;
m Authenticated encryption (AE) modes.

m Our main tool: random functions graphs statistics.

Generic attacks using random functions statistics 7/ 42

Qutline

Random function statistics

Generic attacks using random functions statistics 8/ 42

Random functions

$n is the set of functions which map a finite set of size N € N* to itself.

Our main focus:
The graph of f, denoted by G(f), is a directed graph such that an edge goes from node i to node j
if and only if £(i) = .

Properties and statistics of functional graphs are used in generic attacks.

Generic attacks using random functions statistics 9 /42

Functional graphs: an example

The graph of f, denoted by G(f), is a directed graph such that an edge goes from node i to node j
if and only if £(i) = .

f [0;7] — [0;7]

0 —2 4

— 1

—5 2 3
— 2

— 7 t;

— 1 1 6
— 3

~No ok~ wnN -

Generic attacks using random functions statistics 10 / 42

Functional graphs (1)

Definitions.

m The graph of f can be seen as a set of connected components.

m Each connected component has a unique cycle.

m Each cyclic node is the root of a tree.

Statistics (e.g. [FO89]).
m Expected size of f's largest component: 0.76/N

m Expected size of f's largest tree: 0.48N

Generic attacks using random functions statistics

v
jﬁ
&. %.7‘
T\ o
O
{
.)(R.
N A

Functional graphs (2)

For any xo € G(f) o« o v
m (x; = f'(x0))ien is eventually periodic. XOI .
. . ° X1 *
m (X;)ien graphically corresponds to a path linked to a cycle. v l/. o
e

Generic attacks using random functions statistics 12 / 42

Functional graphs (2)

For any xo € G(f)

m (x; = f'(x0))ien is eventually periodic.

m (X;)ien graphically corresponds to a path linked to a cycle.
Definitions.

m Tail length t(xp): smallest i s.t. x; is in the cycle.

m Cycle length £(xp): number of nodes in the cycle.

Statistics. For x a random node:

m Expected value of its tail length #(x 7N /8.

m Expected value of its cycle length £(x wIN/8.

Generic attacks using random functions statistics

<
.<:“‘

3,
L]

.ﬁ.ﬂ;.
’\o
ﬁ.\.

<+--———=

/o(—o(
&
’\.

&S
o~
:ﬁ

o—)I::’
e
7

Qutline

Memory-negligible collision search

Generic attacks using random functions statistics 13 / 42

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 — FJ such that

m Preimage resistance. Given D € F3, it is difficult to find M € F} s.t. H(M) = D;
m Second preimage resistance. Given M, it is difficult to find M’ % M s.t. H(M') = H(M);
m Collision resistance. It is difficult to find (M, M’), M # M’ such that H(M) = H(M’).

Generic attacks using random functions statistics 14 / 42

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 — FJ such that

m Preimage resistance. Given D € F3, it is difficult to find M € F} s.t. H(M) = D;
m Second preimage resistance. Given M, it is difficult to find M’ % M s.t. H(M') = H(M);
m Collision resistance. It is difficult to find (M, M’), M # M’ such that H(M) = H(M’).

Generic collision attack: Compute H(M) for O(2"/2) messages M, store M at the address H(M).

Generic attacks using random functions statistics 14 / 42

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 — FJ such that

m Preimage resistance. Given D € F3, it is difficult to find M € F} s.t. H(M) = D;
m Second preimage resistance. Given M, it is difficult to find M’ % M s.t. H(M') = H(M);
m Collision resistance. It is difficult to find (M, M’), M # M’ such that H(M) = H(M’).

Generic collision attack: Compute H(M) for O(2"/2) messages M, store M at the address H(M).

Memory complexity is also a O(2"/?).

Generic attacks using random functions statistics 14 / 42

Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F5 — FJ such that

m Preimage resistance. Given D € F3, it is difficult to find M € F} s.t. H(M) = D;
m Second preimage resistance. Given M, it is difficult to find M’ % M s.t. H(M') = H(M);
m Collision resistance. It is difficult to find (M, M’), M # M’ such that H(M) = H(M’).

Generic collision attack: Compute H(M) for O(2"/2) messages M, store M at the address H(M).

Memory complexity is also a O(2"/?).

Solution: a generic memory-negligible collision attack using functional graphs.

Generic attacks using random functions statistics 14 / 42

A memory-negligible collision attack on H

Let f € Fon be defined as
f . F; — F3

x — H(x).
Step 1. A cycle finding algorithm allows to recover a cyclic node x.
m in time O(2"/?);

m using a negligible amount of memory.

Step 2. Using x., one can
m recover the cycle length ¢(x.),
m find a collision on f, and thus on H,

in time O(2"/2) and with negligible memory.

Generic attacks using random functions statistics 15 / 42

Ex: Floyd's cycle finding algorithm

X0

parameters: f € Fon

[y

X0 <R Fg

turtle, hare < xg, Xo

cfori=1t0o2"—1do
turtle < f(turtle)
hare + f2(hare)
if turtle = hare then

return turtle

end if

end for

©CONDAO WD

Generic attacks using random functions statistics 16 / 42

Ex: Floyd's cycle finding algorithm

X0

The tail length t = t(xp) is the smallest j s.t. x; in the
cycle. 2

Generic attacks using random functions statistics 17 / 42

Ex: Floyd's cycle finding algorithm

X0

The tail length t = t(xp) is the smallest j s.t. x; in the
cycle. 2

X2t

Generic attacks using random functions statistics 17 / 42

Ex: Floyd's cycle finding algorithm

X0

The tail length t = t(xp) is the smallest j s.t. x; in the
cycle. 2

Let dt = diSt(Xt,th).

X2t

Generic attacks using random functions statistics 17 / 42

Ex: Floyd's cycle finding algorithm

The tail length t = t(xg) is the smallest j s.t. x; in the

cycle. 0
f
Let dt = diSt(Xt,th). f2
Then
dist(f(x:), f(x2:)) = d; +1 mod . £
Xt
X2t

Generic attacks using random functions statistics 17 / 42

Ex: Floyd's cycle finding algorithm

The tail length t = t(xg) is the smallest j s.t. x; in the

cycle. 0
f
Let dt = diSt(Xt,th). f2
Then
diSt(Xt+k,X2(t+k)) =d;+k mod/. f
Xt
X2t

Generic attacks using random functions statistics 17 / 42

Ex: Floyd's cycle finding algorithm
The tail length t = t(xg) is the smallest j s.t. x; in the
cycle.
Let dt = diSt(Xt,th).
Then
dist(xt+k, X2(t+k)) = dt + k mod /.

After at most t + £ tries, the algorithm finds / s.t.
X; = Xo;, and x; is in the cycle.

Generic attacks using random functions statistics 17 / 42

Ex: Floyd's cycle finding algorithm
The tail length t = t(xg) is the smallest j s.t. x; in the
cycle.
Let dt = diSt(Xt,th).
Then
dist(xt+k, X2(t+k)) = dt + k mod /.

After at most t + £ tries, the algorithm finds / s.t.
X; = Xo;, and x; is in the cycle.

If f behaves like a random function, if xg is drawn at
random, we expect t = / = /7/8 - 2"/2,

Generic attacks using random functions statistics 17 / 42

Ex: Floyd's cycle finding algorithm
The tail length t = t(xg) is the smallest j s.t. x; in the
cycle.
Let dt = diSt(Xt,th).
Then
dist(xt+k, X2(t+k)) = dt + k mod /.

After at most t + £ tries, the algorithm finds / s.t.
X; = Xo;, and x; is in the cycle.

If f behaves like a random function, if xg is drawn at
random, we expect t = / = /7/8 - 2"/2,

Floyd's time complexity: O(2"/2) evaluations of f,
memory complexity is negligible. d

Generic attacks using random functions statistics 17 / 42

A memory-negligible collision attack on H

Let f € Fon be defined as
f . F; — F3

x — H(x).
Step 1. A cycle finding algorithm allows to recover a cyclic node x.
m in time O(2"/?);

m using a negligible amount of memory.

Step 2. Using x., one can
m recover the cycle length ¢(x.),
m find a collision on f, and thus on H,

in time O(2"/2) and with negligible memory.

Generic attacks using random functions statistics 18 / 42

Qutline

State recovery attack against HMAC

Generic attacks using random functions statistics 19 / 42

Message Authentication Code (MAC) algorithms

Unreliable channel of communication g

Alice od|fy Bob
K.M (Integrity) K

A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the
integrity of the message.

Generic attacks using random functions statistics 20 / 42

Message Authentication Code (MAC) algorithms

Unreliable channel of communication g

Alice od|fy Bob
K.M (Integrity) K
T = MAC(K, M)

A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the
integrity of the message.

Generic attacks using random functions statistics 20 / 42

Message Authentication Code (MAC) algorithms

Unreliable channel of communication g
O (M, T) ¢35 (M TD Ii

Alice od|fy Bob
K.M (Integrity) K
T = MAC(K, M)

A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the
integrity of the message.

Generic attacks using random functions statistics 20 / 42

Message Authentication Code (MAC) algorithms

Unreliable channel of communication g
O (M, T) ¢35 (M TD Ii

Alice od|fy Bob
K.M (Integrity) K
T = MAC(K, M)

A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the
integrity of the message.

Generic attacks using random functions statistics 20 / 42

Message Authentication Code (MAC) algorithms

Unreliable channel of communication g
O (M, T) ¢35 (M TD Ii

Alice od|fy Bob
K.M (Integrity) K
T = MAC(K, M) if MAC(K,M') ==T'
return True

A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the
integrity of the message.

Generic attacks using random functions statistics 20 / 42

Hash-based MACs

Hash functions can be used to build MACs.

m It is easy to build a secure MAC with an ideal hash function, i.e. a random oracle.
m With a real hash function, it is essential to study generic attacks.

m Several papers analyse the generic security of HMACs.

We present a 2013 state recovery attack by Leurent, Peyrin and Wang on HMAC [BCK96].

M, M Ms A M| =L

R O
IR Jh Johle ol HT

Generic attacks using random functions statistics 21 / 42

State-recovery attack on HMAC [LPW13]

M= My || |[Mc
My Mo Ms M, M| =L

I b L L
e R R Rl _|h I AT

Generic attacks using random functions statistics 22 / 42

State-recovery attack on HMAC [LPW13]

M=5 -8 = 5"

B L
"t~ | J
e -y h h hl...._,h _,T

*7@

Generic attacks using random functions statistics 22 / 42

State-recovery attack on HMAC [LPW13]

M=g||--]|8 = 8"

8 B B L
1 !
ol h Ul h hile...Jh AT

The tag generation iterates the function

h@ . Fg —>]F'27
x — h(B,x).

Generic attacks using random functions statistics 22 / 42

State-recovery attack on HMAC

M=5|-||8 = 8t

8 8 8
i J
ol h Ul h N N

[LPW13]

L

Rl

m For a random (3, we expect hg to behave as a function drawn at random in §an.

m Giant component with about 76% of the nodes.

m We expect x; to behave as a node drawn at random in the g

m With proba 0.76, x; is in the giant component.

B t(x1) =4(x) =+/7/8" 21/2

raph of hg.

Generic attacks using random functions statistics 22 / 42

State-recovery attack on HMAC [LPW13]

m Setting L = cst - 2"/

.>.H.H.gg e <. l i
L 7¢ jVas %

/\.R. [)
& N Z-L. > S

Graph of hg

R RIS h h»...HhaT

Generic attacks using random functions statistics 23 / 42

State-recovery attack on HMAC [LPW13]

m Setting L = cst - 2"/

.>.H.H.§§H e R l i
RN 7¢ N £

/\.R. [)
& N Z-L. > S

Graph of hg

R RIS h h»...HhaT

Generic attacks using random functions statistics 23 / 42

State-recovery attack on HMAC [LPW13]

m Setting L = cst - 2"/

.>.H.H.§§H e R l i
N s 7¢ N £

/\.R. [)
& N Z-L. > S

Graph of hg

8 8 8 B
| t
ol b |l oh hle. ..l h AT

Generic attacks using random functions statistics 23 / 42

State-recovery attack on HMAC [LPW13]

m Setting L = cst - 2"/

.>.H.H.§§H e R l i
N s 7¢ N £

/\.R. [)
& N Z-L. > S

XL

Graph of hg

8 8 8 B
| t
ol b |l oh hle. ..l h AT

Generic attacks using random functions statistics 23 / 42

Idea 1: Building two messages who reach the same state
B B B B L

o

IKﬁn/—>h X1 h h4>4>h — T

= L and My = BL*! reach the same final state.

Two issues: # message lengths + the state is not recovered.

Generic attacks using random functions statistics 24 / 42

Idea 1: Building two messages who reach the same state
B B B B L

o

IKﬁn/—>h X1 h h4>4>h — T

= L and My = BL*! reach the same final state.

Two issues: # message lengths + the state is not recovered.

Generic attacks using random functions statistics 24 / 42

Idea 1: Building two messages who reach the same state
B B B B L

o

/Kﬁn,_>h X1 h h»Hh ——

= L and My = BL*! reach the same final state.

Two issues: # message lengths + the state is not recovered.

Generic attacks using random functions statistics 24 / 42

Idea 2: reach the cycle twice

ﬁ l ﬁ l. ﬁ l
SRS S £

<R < R, <R
L7 L7 L7
N N N
Mo = 34| My = 55| Mz = 5[]

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics

25 / 42

Idea 2: reach the cycle twice

ﬁ l ﬁ l. ﬁ l
S SRS N £

KR < R, <R
L7 L7 L7
N N N
Mo = 34| My = 55| Mz = 5[]

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics

25 / 42

Idea 2: reach the cycle twice

l.]
olo. l \.Lo.
Ny NP VY

SRS
‘\,/f "N f .\.z'f

Mo = 5[l My = BH]| Mo = 5[]

|

<—<\—<—
<—§<—

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics

25 / 42

Idea 2: reach the cycle twice

ll h
inf/ N

0

%ﬁ.%

o *—o
I/ 5, I/ \ I/ A,
'\,/f Ny f '\,/f
Mo = 5|1 My = 55| My = G|

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

ll h
inf/ N

0

<—<\—.%

o *—o
I/ 5, I/ \ I/ A,
'\,/f Ny f '\,/f
Mo = 5|1 My = 55| My = G|

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

ll h
inf/ N

0

<—<\—.%

o *—o
I/ 5, l/ \ I/ A,
'\,/f N f '\,/f
Mo = 5|1 My = 55| My = G|

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice
VIZB FS P
RSSO T

YOI i
N I/ A N
‘\,/f N f .\.z'f

o—ei—e
e
L)

Mo = 54| My = 55| M = 54|

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

i]
v\if/ V\i

0

<—<\—.%

o *—o
I/ 5, I/ \ I/ A,
'\,/f "N, f '\,/f
Mo = {17 My = 5| Mo = 5]l

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

i]
v\if/ V\i

0

<—<\—.%

o *—o
I/ 5, I/ \ I/ A,
'\,/f "N, f '\,/f
Mo = {17 My = 5| Mo = 5]l

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

i]
v\if/ V\i

<—<\—.%

K. .R.
I/ N I/ A \,
'\,/f "N, f '\,/f
Mo =]| My = 55| Mz = 34|

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

i A
v\if/ V\i

]
NT

<—,<\—.%

o *—o
I/ 5, I/ \ I/ A,
'\,/)f "N, f '\,/f
Mo = {17 My = 55| Mo = 5]l

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

i A
v\if/ V\i

]
NT

<—,<\—.%

o *—o
I/ 5, I/ \ I/ A\
'\,/)f "N, f '\,/,f
Mo = {17 My = 55| Mo = 5]l

My and M, reach the same state with constant probability and |M;| = [Ma|.

Still no state recovery.

Generic attacks using random functions statistics 25 / 42

Idea 2: reach the cycle twice

(1] (1
ST

]
NT

<—,<\—.%

K. .R.
I/ X, I/ \ I/ X,
'\,/)f "N, f '\,/,f
Mo = 541l My = 55| My = G|

My and M, reach the same state with constant probability and |M;| = |Ma|.

Still no state recovery. Idea 3: use the root of the main tree «.

Generic attacks using random functions statistics 25 / 42

Qutline

Generic attack against AE modes

Generic attacks using random functions statistics 26 / 42

Authenticated Encryption

Unreliable channel of communication ﬂ
Alice c I_fjdste_n‘_ Modify Bob
KN, M (Confidentiality) (Integrity) K

Eve

An authenticated encryption scheme ensures both the confidentiality and integrity of
communications.

Generic attacks using random functions statistics 27 / 42

Authenticated Encryption

‘ Unreliable channel of communication ﬂ

Alice f ‘ Modify Bob
KN, M (Con \dentla ity) (Integrity) K

(C.T)= Enc(K,N, M)

Eve

An authenticated encryption scheme ensures both the confidentiality and integrity of
communications.

Generic attacks using random functions statistics 27 / 42

Authenticated Encryption

Unreliable channel of communication ﬂ
O - (N,C, T)—) II

Alice f ‘ Modify Bob
KN, M (Con \dentla ity) (Integrity) K

(C.T)= Enc(K,N, M)

Eve

An authenticated encryption scheme ensures both the confidentiality and integrity of
communications.

Generic attacks using random functions statistics 27 / 42

Authenticated Encryption

Unreliable channel of communication ﬂ
O - (N,C, T)—) II

Alice f ‘ Modify Bob
K, N, M (Con \dentla ity) (Integrity) p
(C.T) = Enc(K,N, M) if Verif (K, N, C, T)

return M = Dec(K, N, C)

Eve

An authenticated encryption scheme ensures both the confidentiality and integrity of
communications.

Generic attacks using random functions statistics 27 / 42

Authenticated Encryption

Unreliable channel of communication ﬁ
O —(N,C,T)—) | I

Alice Modify Bob
KN, M Conf\dentlaht\/)l (Integrity) p
(C. T) = Enc(K,N, M)) if Verif (K, N, C, T)

return M = Dec(K, N, C)

Eve

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Generic attacks using random functions statistics 27 / 42

Authenticated Encryption

Unreliable channel of communication ﬂ
O —(N,C,T) —) | I

Alice Modify Bob
KN, M Conf\dentlaht\/)l (Integrity) p
(C. T) = Enc(K,N, M)) if Verif (K, N, C, T)

return M = Dec(K, N, C)

Eve

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

m Assuming a nonce-respecting adversary
m and no release of unverified plaintext.

Generic attacks using random functions statistics 27 / 42

Duplex-based AE modes

Authenticated Encryption
m (Historically) block-cipher based: (tweakable) block cipher + mode

m (More recently) permutation-based: public permutation + keyed mode

Permutation-based modes of operation [BDPVA11]

m Many candidates at the NIST lightweight competition (2018-2023), including the winner
ASCON.

m Modes are proven secure when instantiated with a random permutation.

m It is difficult to assess in practice — cryptanalysis.

Generic attacks using random functions statistics 28 / 42

Duplex-based AE modes [BDPVA11,DMV17]

Encryption

Fi final

.

Il |

initial phase plaintext processing final phase

m Permutation P operates on a state of length b = r 4 ¢ bits, r is the rate, ¢ the capacity.

m First r bits: the outer state Ex: Cyclist (Xoodyak)
m Next c bits: the inner state r=192, ¢ =192

Generic attacks using random functions statistics 29 / 42

Duplex-based AE modes [BDPVA11,DMV17]

Encryption

.

Il

Fi final

|

initial phase plaintext processing final phase

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Generic attacks using random functions statistics

29 / 42

Duplex-based AE modes [BDPVA11,DMV17]

Decryption/verification

Go G Cr1 T
P P Ftinal
:U > ———————
J J
initial phase plaintext processing final phase

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Generic attacks using random functions statistics 29 / 42

Duplex-based AE modes [BDPVA11,DMV17]

Decryption/verification

Go G Ci-1 T

Final

l J |

initial phase plaintext processing final phase

The knowledge of x;_1 allows to build a forgery.

Generic attacks using random functions statistics

29 / 42

Disclaimer:this is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity oe/2

2C

Provable security

[BDPVAL1]

Generic attacks using random functions statistics

30 / 42

Disclaimer:this is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity /2 2/ 2°
Provable security Genéric attacks
[BDPVAL1] [JLM14]
[JLMSY19]

«: small constant

Generic attacks using random functions statistics 30 / 42

Disclaimer:this is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity /2 2/ 2°
Provable security Genéric attacks
[BDPVAL1] [JLM14]
[JLMSY19]

«: small constant

Generic attacks using random functions statistics 30 / 42

Disclaimer:this is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity

2¢/a 2°

2c/2 2C/Ud

Provable security beyond birthday?

Genéric attacks

[BDPVA11] [JLMSY19]

«: small constant
o4: number of online calls to P caused by forgery attempts

Generic attacks using random functions statistics

[JLM14]
[JLMSY19]

30 / 42

Disclaimer:this is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity

2C/2 2C/(rd 2¢/a 2°
Provable security <—/2‘ be irthday? Geneéric attacks
i = 2C i

[BDPVAll] [JLMSY19]

o small constant
o4: number of online calls to P caused by forgery attempts

Generic attacks using random functions statistics

[JLM14]
[JLMSY19]

30 / 42

Disclaimer:this is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity 9e/2 P Y:
Provable security Genéric attacks
[BDPVAL11] [JLM14]
[JLMSY19] [JLMSY19]

«: small constant
o4: number of online calls to P caused by forgery attempts

Generic attacks using random functions statistics 30 / 42

Disclaimer: -this_is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity /2 o3c/a 2°/a 2°
Provable security Generic attacks
[BDPVAL1] [GHKR23] [JLM14]
[JLMSY19] [JLMSY19]

«: small constant
o4: number of online calls to P caused by forgery attempts

Generic Attack on Duplex-Based AEAD Modes Using Random Function Statistics. Gilbert, Heim Boissier,
Khati, Rotella. EUROCRYPT 2023

Generic attacks using random functions statistics 30 / 42

Disclaimer: -this_is simplified

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity e/2 n2c/3 o3c/a 2°/a 2°
Provable security Generic attacks
[BDPVA11] [BHLS24] [GHKR23] [JLM14]
[JLMSY19] [JLMSY19]

«: small constant
o4: number of online calls to P caused by forgery attempts

Improving Generic Attacks Using Exceptional Functions. Bonnetain, Heim Boissier, Leurent, Schrottenloher.
CRYPTO 2024

Generic attacks using random functions statistics 30 / 42

Main observation (1/2)
Verification (C = Go || -+ ||Cr=1, T)

Co C1 CL—l T

P Ftinat

Generic attacks using random functions statistics 31/ 42

Main observation (1/2)
Verification (C = Go || -+ ||Cr=1, T)

Cr1 T

Ftinat

XL—1

We define a compression function h induced by P:

h:F5 — TS
x+— |P(x)]c.

Generic attacks using random functions statistics 31/ 42

Main observation (1/2)
Verification (8%, T)

Ftinat

XL—1

We define a compression function h induced by P:

h:F5 — TS
x+— |P(x)]c.

Generic attacks using random functions statistics 31/ 42

Main observation (1/2)
Verification (8%, T)

Ftinat

XL—1

The tag verification iterates the function

hB:FS —>F§
x — h(8,x).

Generic attacks using random functions statistics 31/ 42

Main observation (1/2)
Verification (8%, T)

Ftinat

XL—1

m For a random (3, we expect hg to behave as a random function drawn in Foe.

m For each nonce, we expect xg to behave as a random point drawn in the graph of hg.

Generic attacks using random functions statistics 31/ 42

Main observation (2/2)

Generic attacks using random functions statistics

Ffinal

32 / 42

Main observation (2/2)

Generic attacks using random functions statistics

Ffinal

32 / 42

Main observation (2/2)

Generic attacks using random functions statistics

Ffinal

32 / 42

Main observation (2/2)

\ %‘Ro
Xr-1
Graph of hg
B B
h h
X1 X2

Generic attacks using random functions statistics

Ffinal

32 / 42

Exceptional functions

N o)
>._>._\¢/>\ Pamas | '

o——o .\/ ,\‘R
Xo \ /‘ N 'T
XL—1 *

Graph of an exceptional hg

If one finds 3 s.t. hg has a reasonably large component (say > 0.65 - 2°) with an exceptionnally small cycle
(say < 2%)...

Generic attacks using random functions statistics 33 /42

Exceptional functions

e o
—>>*>*\)‘ /\r‘/ V4 A < e
p N\ N

XL—1 °

Graph of an exceptional hg
If one finds 3 s.t. hg has a reasonably large component (say > 0.65 - 2°) with an exceptionnally small cycle

(say < 23)...
B Xo belongs to the large component with good probability (> 0.65).

Generic attacks using random functions statistics 33 /42

Exceptional functions

e o
—>>*>*\)‘ /\é/ V4 A < e
x0 N\, / RN

Graph of an exceptional hg

If one finds 3 s.t. hg has a reasonably large component (say > 0.65 - 2°) with an exceptionnally small cycle
(say < 2%)...

B Xo belongs to the large component with good probability (> 0.65).
m If so, if Lis ‘large enough’ (L = cst - 2§), x(—1 is in the small cycle with good probability.

Generic attacks using random functions statistics 33 /42

Exceptional functions

e o
—>>*>*\)‘ /\é/ V4 A < e
x0 N\, / RN

Graph of an exceptional hg

If one finds 3 s.t. hg has a reasonably large component (say > 0.65 - 2°) with an exceptionnally small cycle
(say < 2%)...

B Xo belongs to the large component with good probability (> 0.65).
m If so, if Lis ‘large enough’ (L = cst - 2§), x(—1 is in the small cycle with good probability.

m If so, there are at most 24 possible values for x;_1; i.e., at most 24 possible tags.

Generic attacks using random functions statistics 33 /42

Exceptional functions

e o
—>>*>*\)‘ /\é/ V4 A < e
x0 N\, / RN

Graph of an exceptional hg

If one finds 3 s.t. hg has a reasonably large component (say > 0.65 - 2°) with an exceptionnally small cycle
(say < 2%)...

B Xo belongs to the large component with good probability (> 0.65).
m If so, if Lis ‘large enough’ (L = cst - 2§), x(—1 is in the small cycle with good probability.

m If so, there are at most 24 possible values for x;_1; i.e., at most 24 possible tags.

Resulting forgery attack: (1) precompute an exceptional hs and (2) try the < 24 possible values for T.

Generic attacks using random functions statistics 33 /42

A new statistic

>}.—>.—>.
AV .
H>Hg/>> > /.%.<, A .

X TN \‘/‘"’\°§°

XL—1 °

Graph of an exceptional hg

[DeLaurentis87]: Probability that a hs has a component s.t.
m (exceptionally small cycle) ¢ <2¢ (e.g. £ <274,
m (reasonably large size) of size >2°-s (e.g. size > 0.65 - 2°):

Ps,u = \/2(1 — s)/ms - 2+~ 2 (e.g. 0.6-273).

Generic attacks using random functions statistics

l)

34 / 42

Forgery attack [GKHR23]

Precomputation phase: Find § s.t. hg has a large component (> 0.65 - 2¢) with an
exceptionnally small cycle (< 2#) and recover this cycle.

m For random S’s, # candidates for § ~ 1/ps,, ~ Ra—t
m Recover the cycle length using Brent's algorithm. complexity ~ 2% applications of h

Total complexity: = 2°~# applications of h.
Online phase: Submit (N, C = 8L, T) queries where T = Fnay (8]]x), x in the cycle.

m Set L =322 so that x;_1 in the cycle with good probability
m At most 2" possible values for T.

Total complexity: = 22+# applications of h.
Balanced complexity: 2%

Generic attacks using random functions statistics 35 / 42

Summary of our result

Beyond an asymptotic result

m Total time complexity: < 21 -27% .

m Probability of success: > 95%.

m NB: almost always a key recovery (since forgery — state recovery — key recovery).

Applications
m Modes of Norx v2, Ketje, KNOT and Keyak;
m Attack of complexity 24 on Xoodyak

m Breaks a 184-bit security claim (corrected since).

Generic attacks using random functions statistics 36 / 42

A new improvement [BHLS24]

Define a nested function gg , from the cycle € of hs to itself.

Graph of hg ./

0\ Graph of gg -
: ,@-

N\, x

. X1

\/xz 5K <: -~ s, | °
>.*>o/\<‘"5%T X; 6

X0

gs, =htoh,:x €% x' €% with good probability.

Generic attacks using random functions statistics

37 / 42

A new improvement [BHLS24]

Define a nested function gg , from the cycle € of hs to itself.

Graph of hg ./

.\ \b 88,7(x0) = xa Graph of gg 4
L]
.

N\, x

. X1

\ ,/xZ xvﬁ < < s, .

Xo@ e X0

l
A x .
> /\<‘r — I * X
/N

gs, =htoh,:x €% x' €% with good probability.

Generic attacks using random functions statistics

37 / 42

A new improvement [BHLS24]

Define a nested function gg , from the cycle € of hs to itself.

Graph of hg ./

.\ \b 88,7(x0) = xa Graph of gg 4
L]
.

\l gﬂ,'y(X‘l) = X2 X2

. X1

\ ,/xZ xy‘\\ < < s, .

Xo@ e X0

l
s/ x .
> /\<‘r I X * X
AN

gs, =htoh,:x €% x' €% with good probability.

Generic attacks using random functions statistics

37 / 42

A new improvement [BHLS24]

Define a nested function gg , from the cycle € of hs to itself.

Graph of hg ./

.\ \b 88,7(x0) = xa Graph of gg 4
L]
.

\l gﬂ,'y(X‘l) = X2 X2

. X1

\ /xz R <: <. .

Xo® X2) = X1 X0
X4 gﬁ,'y()
X4

o = , . e

/\

gs, =htoh,:x €% x' €% with good probability.

Generic attacks using random functions statistics

37 / 42

A new improvement [BHLS24]

Define a nested function gg - from the cycle € of hg to itself.

Graph of hg .1/

gﬁa’Y(X4) = X2 X2 X1

g,g’,y(xz) = X1 o X0
><4‘K
X5

gy = h’[; oh,:x €% — x' € € with good probability.

Generic attacks using random functions statistics 37 / 42

Nesting exceptional functions [BHLS24]

Find 3 s.t. hg is exceptional.
m Let 2/ < 2°/2 be the cycle length of hg.

Find v s.t. gg . is exceptional.

m For a random v, gs - has cycle length 2#/2 < 2¢/4,
m Let 27 (< 2¢/%) be the cycle length of the exceptional 88~

One must only try 2” tags, but the ciphertexts are a lot longer.

For 1 = 2¢/7 and v = c/14, the balanced total complexity is 2°/7 < 23¢/4,

Our best attack against duplex-based modes has complexity 22</2,

B It uses precomputations in the graph of hg.

Generic attacks using random functions statistics 38 / 42

Other contributions [BHLS24]

m Generic attacks against hash combiners using (nested) exceptional functions.

m Historically, those attacks use a bunch of cryptanalytic tools.

® Joux’'s multi-collisions, Diamond structure, Expandable messages,...

m Using (classical) exceptional functions, we improve the best existing attacks against

m XOR Combiner. M — Hy(M) @& Hx(M) (preimage);
m Zipper Hash. M — Ha(H1(IV, M),M) (second preimage);

m Hash-Twice. M — Ha(Hy(IV, M), M) (second preimage, second preimage quantum).

Generic attacks using random functions statistics 39 / 42

Qutline

Conclusion

Generic attacks using random functions statistics 40 / 42

Key take-aways

Functional graphs have many applications in generic cryptanalysis.

Our contribution [GKHR23,BHLS24]

m Showing the applicability of functional graph techniques to AE modes.

m First use of exceptional behaviour of random functions.

Bridging the gap between provable security and practical attacks.

m A variant of our attack w/ computational complexity O(2¢) is ‘tight’. [Lef24]

Beyond asymptotic results: break of a security assumption of Xoodyak.

m Improving a long series of attacks on hash combiners.

Generic attacks using random functions statistics 41 / 42

Perspectives and fun follow-up questions

Fully specified primitives
m Finding exceptional functions on real-life permutations using their specification.

m Building a backdoor permutation that ‘looks’ secure, but with a known exceptional function.

Overall goal: Bridging the gap between provable security and cryptanalysis.

m What about the quantum setting?

Removing residual heuristics
m Heuristic assumptions on the distribution of t(xg) for xo in an exceptional component.

m Experimentally verified.

Thank you for your attention!

Generic attacks using random functions statistics 42 / 42

	Random function statistics
	Memory-negligible collision search
	State recovery attack against HMAC
	Generic attack against AE modes
	Conclusion

