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Symmetric cryptology

Symmetric cryptology studies algorithms allowing two entities that share a common secret, the
key K , to communicate in a secure manner∗

∗... as well as some ‘keyless’ algorithms such as hash functions.
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Building symmetric algorithms

Cryptography relies on building blocks called primitives used within modes of operation or
constructions to build more complex algorithms.

Primitive

Mode/construction

Symmetric algorithm

The notion of primitive is relative.

Most primitives do not provide a standalone cryptographic mechanism on their own.
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Primitives

A block cipher of key size κ bits and block size n bits is a function

E : Fκ
2 × Fn

2 −→ Fn
2

(K ,X ) 7−→ E(K ,X )

such that for any key K , EK (·) := E(K , ·) is a permutation of Fn
2.
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A public permutation P over Fn
2 does not depend on a key.
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Modes/constructions

Block cipher-based

Ex: the encryption mode CBC.
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Permutation-based

Ex: the sponge construction for hashing.
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Security in cryptography (1/2)

Two main approaches:

Provable security: reducing the security of a scheme to some ‘reasonable’ assumption.

How do we assess the reasonability of our assumption?

Cryptanalysis: security analysis effort.

If the international cryptographic community cannot break it, then, hopefully, noone else can.

International standardisation competitions organised by the NIST.

The cryptanalysis effort be global, continuous and comprehensive.
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Security in cryptography (2/2)

Primitive security

can only be guaranteed through cryptanalysis.

More or less well-defined security assumptions.

Mode/construction security

Proved under the assumption that the primitive is secure.

Proofs provide a partial information on the security level.

Cryptanalysis, and in particular generic attacks, provides a complementary point of view.

A generic attack assumes an ideal behaviour of the underlying primitive.

Elementary ex: generic key recovery attack on E given X and Y = EK (X ).

Exhaustively try the 2κ possible secret keys.
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This talk

Symmetric cryptanalysis.

Generic attacks against a variety of iterated constructions:

Hash functions;
Message Authentication Codes (MAC) modes;
Authenticated encryption (AE) modes.

Our main tool: random functions graphs statistics.
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1 Random function statistics

2 Memory-negligible collision search

3 State recovery attack against HMAC

4 Generic attack against AE modes

5 Conclusion
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Random functions

FN is the set of functions which map a finite set of size N ∈ N∗ to itself.

Our main focus:

The graph of f , denoted by G (f ), is a directed graph such that an edge goes from node i to node j
if and only if f (i) = j .

Properties and statistics of functional graphs are used in generic attacks.
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Functional graphs: an example

The graph of f , denoted by G (f ), is a directed graph such that an edge goes from node i to node j
if and only if f (i) = j .

f : J0; 7K −→ J0; 7K

0 7−→ 2
1 7−→ 1
2 7−→ 3
3 7−→ 5
4 7−→ 2
5 7−→ 7
6 7−→ 1
7 7−→ 3

2 3
0 5

7
4

6
1
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Functional graphs (1)

Definitions.

The graph of f can be seen as a set of connected components.

Each connected component has a unique cycle.

Each cyclic node is the root of a tree.

Statistics (e.g. [FO89]).

Expected size of f ’s largest component: 0.76N

Expected size of f ’s largest tree: 0.48N
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Functional graphs (2)

For any x0 ∈ G (f )

(xi := f i (x0))i∈N is eventually periodic.

(xi )i∈N graphically corresponds to a path linked to a cycle.

Definitions.

Tail length t(x0): smallest i s.t. xi is in the cycle.

Cycle length ℓ(x0): number of nodes in the cycle.

Statistics. For x a random node:

Expected value of its tail length t(x):
√

πN/8.

Expected value of its cycle length ℓ(x):
√

πN/8.

x0

x1

··
·
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Cryptographic hash functions

Definition. A cryptographic hash function is a function H : F∗
2 → Fn

2 such that

Preimage resistance. Given D ∈ Fn
2, it is difficult to find M ∈ F∗

2 s.t. H(M) = D;

Second preimage resistance. Given M, it is difficult to find M ′ ̸= M s.t. H(M ′) = H(M);

Collision resistance. It is difficult to find (M,M ′), M ̸= M ′ such that H(M) = H(M ′).

Generic collision attack: Compute H(M) for O(2n/2) messages M, store M at the address H(M).

Memory complexity is also a O(2n/2).

Solution: a generic memory-negligible collision attack using functional graphs.
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A memory-negligible collision attack on H

Let f ∈ F2n be defined as
f : Fn

2 −→ Fn
2

x 7−→ H(x) .

Step 1. A cycle finding algorithm allows to recover a cyclic node xc

in time O(2n/2);

using a negligible amount of memory.

Step 2. Using xc , one can

recover the cycle length ℓ(xc),

find a collision on f , and thus on H,

in time O(2n/2) and with negligible memory.
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Ex: Floyd’s cycle finding algorithm

parameters: f ∈ F2n

1: x0 ←R Fn
2

2: turtle, hare ← x0, x0

3: for i = 1 to 2n − 1 do
4: turtle ← f (turtle)
5: hare ← f 2(hare)
6: if turtle = hare then
7: return turtle
8: end if
9: end for

x0

f
f 2
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Ex: Floyd’s cycle finding algorithm

The tail length t = t(x0) is the smallest j s.t. xj in the
cycle.

Let dt = dist(xt , x2t).

ThenAfter at most t + ℓ tries, the algorithm finds i s.t.
xi = x2i , and xi is in the cycle.

If f behaves like a random function, if x0 is drawn at
random, we expect t = ℓ =

√
π/8 · 2n/2.

Floyd’s time complexity: O(2n/2) evaluations of f ,
memory complexity is negligible.

x0

f
f 2
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A memory-negligible collision attack on H

Let f ∈ F2n be defined as
f : Fn

2 −→ Fn
2

x 7−→ H(x) .

Step 1. A cycle finding algorithm allows to recover a cyclic node xc

in time O(2n/2);

using a negligible amount of memory.

Step 2. Using xc , one can

recover the cycle length ℓ(xc),

find a collision on f , and thus on H,

in time O(2n/2) and with negligible memory.
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Message Authentication Code (MAC) algorithms

Alice
K ,M

T = MAC (K ,M)

Bob
K

if MAC (K ,M ′) == T ′

return True

Eve

Listen
(Confidentiality)

Modify
(Integrity)

Unreliable channel of communication

(M ,T ) EEE (M ′,T ′)

A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the
integrity of the message.
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Hash-based MACs

Hash functions can be used to build MACs.

It is easy to build a secure MAC with an ideal hash function, i.e. a random oracle.

With a real hash function, it is essential to study generic attacks.

Several papers analyse the generic security of HMACs.

We present a 2013 state recovery attack by Leurent, Peyrin and Wang on HMAC [BCK96].

M1 M2 M3 ML |M| = L

hIK

n

n h h · · · h hgK T
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State-recovery attack on HMAC [LPW13]

M = M1 || · · · ||ML

M1 M2 M3 ML |M| = L

hIK

n

n h h · · · h hgK T
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State-recovery attack on HMAC [LPW13]

M = β || · · · ||β = βL

β β β β L

hIK

n

n h h · · · h hgK T
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State-recovery attack on HMAC [LPW13]

M = β || · · · ||β = βL

β β β β L

hIK

n

n hx1 hx2 · · · h hgKxL T

The tag generation iterates the function

hβ : Fn
2 −→ Fn

2

x 7−→ h(β, x) .
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State-recovery attack on HMAC [LPW13]

M = β || · · · ||β = βL

β β β β L

hIK

n

n hx1 hx2 · · · h hgKxL T

For a random β, we expect hβ to behave as a function drawn at random in F2n .

Giant component with about 76% of the nodes.

We expect x1 to behave as a point drawn at random in the graph of hβ .

With proba 0.76, x1 is in the giant component.
t(x1) = ℓ(x1) =

√
π/8 · 2n/2.
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State-recovery attack on HMAC [LPW13]

Setting L = cst · 2n/2:

x1

Graph of hβ

β β β β L

hIK

n

n hx1 hx2 · · · h hgKxL T
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State-recovery attack on HMAC [LPW13]

Setting L = cst · 2n/2:

x1
x2 x3

xL
Graph of hβ
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Idea 1: Building two messages who reach the same state
β β β β L

hIK

n

n hx1 hx2 · · · h hgKxL T

M1 = βL

x1
x2 x3

xL

M1 = βL and M2 = βL+ℓ reach the same final state.

Two issues: ̸= message lengths + the state is not recovered.
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Idea 1: Building two messages who reach the same state
β β β β L

hIK

n

n hx1 hx2 · · · h hgKxL T

M2 = βL+ℓ

x1
x2 x3

xL+ℓ

M1 = βL and M2 = βL+ℓ reach the same final state.

Two issues: ̸= message lengths + the state is not recovered.
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Idea 2: reach the cycle twice

M0 = βL||γ||βL M1 = βL+ℓ||γ||βL M2 = βL||γ||βL+ℓ

M1 and M2 reach the same state with constant probability and |M1| = |M2|.

Still no state recovery.
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Idea 2: reach the cycle twice

γ γγ

M0 = βL||γ||βL M1 = βL+ℓ||γ||βL M2 = βL||γ||βL+ℓ

M1 and M2 reach the same state with constant probability and |M1| = |M2|.

Still no state recovery. Idea 3: use the root of the main tree α.
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Authenticated Encryption

Alice
K ,N ,M

(C ,T ) = Enc(K ,N ,M)

Bob
K

if Verif (K ,N ,C ,T )

return M = Dec(K ,N ,C )

Eve

Listen
(Confidentiality)

Modify
(Integrity)

Unreliable channel of communication

→ (N ,C ,T ) →

An authenticated encryption scheme ensures both the confidentiality and integrity of
communications.
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Duplex-based AE modes

Authenticated Encryption

(Historically) block-cipher based: (tweakable) block cipher + mode

(More recently) permutation-based: public permutation + keyed mode

Permutation-based modes of operation [BDPVA11]

Many candidates at the NIST lightweight competition (2018-2023), including the winner
ASCON.

Modes are proven secure when instantiated with a random permutation.

It is difficult to assess this ‘assumption’ in practice → cryptanalysis.
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Duplex-based AE modes [BDPVA11,DMV17]

Encryption

plaintext processing

P

⊕
M0 C0

P

⊕
M1 C1

. . .

. . .

final phase

Ffinal

⊕
Ml−1 Cl−1 T

initial phase

(K ,N) Finit

r

c

Permutation P operates on a state of length b = r + c bits, r is the rate, c the capacity.

First r bits: the outer state

Next c bits: the inner state
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Forgery attack: find a decryption query (N,C ,T ) s.t. the tag verification succeeds.
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Duplex-based AE modes [BDPVA11,DMV17]

Decryption/verification

plaintext processing

P

C0

P

C1

. . .

final phase

Ffinal

Cl−1 T

initial phase

(K ,N) Finit

r

c
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Duplex-based AE modes [BDPVA11,DMV17]

Decryption/verification

plaintext processing

P

C0

P

C1

. . .

final phase

Ffinal

Cl−1 T

initial phase

(K ,N) Finit

r

c

x0 x1 x2 xl−1

Guessing xl−1 allows to build a forgery.
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Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

Time complexity 2c

Provable security

2c/α

[JLM14]
[JLMSY19]

2c/2

[BDPVA11]
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Time complexity 2c
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[JLM14]
[JLMSY19][JLMSY19]

23c/4

[GHKR23]
EXoodyakE

Generic attacks

2c/2

[BDPVA11]

α: small constant
σd : number of online calls to P caused by forgery attempts

Generic Attack on Duplex-Based AEAD Modes Using Random Function Statistics. Gilbert, Heim Boissier,
Khati, Rotella. EUROCRYPT 2023
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Assuming a sufficiently large key/tag/state length:

Time complexity 2c

Provable security

2c/α

[JLM14]
[JLMSY19][JLMSY19]

23c/4

[GHKR23]
EXoodyakE

22c/3

[BHLS24]

Generic attacks

2c/2

[BDPVA11]

α: small constant
σd : number of online calls to P caused by forgery attempts

Improving Generic Attacks Using Exceptional Functions. Bonnetain, Heim Boissier, Leurent, Schrottenloher.
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Main observation (1/2)
Verification (C = C0 || · · · ||CL−1,T )

P

C0

P

C1

. . .

Ffinal

CL−1 T

(K ,N) Finit

r

c

x0 x1 x2 xL−1
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Main observation (1/2)
Verification (C = C0 || · · · ||CL−1,T )

h

C0

h

C1

. . .

Ffinal

CL−1 T

(K ,N) Finit

r

c

x0 x1 x2 xL−1

We define a compression function h induced by P:

h : Fb
2 −→ Fc

2

x 7−→ ⌊P(x)⌋c .
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Main observation (1/2)
Verification (βL,T )

h

β

h

β

. . .

Ffinal

β T

(K ,N) Finit

r

c

x0 x1 x2 xL−1

The tag verification iterates the function

hβ : Fc
2 −→ Fc

2

x 7−→ h(β, x) .
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Main observation (1/2)
Verification (βL,T )

h

β

h

β

. . .

Ffinal

β T

(K ,N) Finit

r

c

x0 x1 x2 xL−1

For a random β, we expect hβ to behave as a random function drawn in F2c .

For each nonce, we expect x0 to behave as a random point drawn in the graph of hβ .
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Main observation (2/2)

x0

Graph of hβ

h

β
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β

. . .

Ffinal
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x0 x1 x2 xL−1
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Main observation (2/2)

x0
x1 x2
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Graph of hβ
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Exceptional functions

x0
x1 x2

xL−1

Graph of an exceptional hβ

If one finds β s.t. hβ has a reasonably large component (say ≥ 0.65 · 2c) with an exceptionnally small cycle
(say ≤ 2

c
4 ). . .

x0 belongs to the large component with good probability (≥ 0.65).

If so, if L is ‘large enough’ (L = cst · 2
c
2 ), xL−1 is in the small cycle with good probability.

If so, there are at most 2
c
4 possible values for xL−1; i.e., at most 2

c
4 possible tags.

Resulting forgery attack: (1) precompute an exceptional hβ and (2) try the ≤ 2
c
4 possible values for T .
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A new statistic

x0
x1 x2

xL−1

Graph of an exceptional hβ

[DeLaurentis87]: Probability that a hβ has a component s.t.

(exceptionally small cycle) ℓ ≤ 2µ (e.g. ℓ ≤ 2−c/4);
(reasonably large size) of size ≥ 2c · s (e.g. size ≥ 0.65 · 2c):

ps,µ ≈
√

2(1 − s)/πs · 2µ− c
2 (e.g. 0.6 · 2− c

4 ).
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Forgery attack [GKHR23]

1 Precomputation phase: Find β s.t. hβ has a large component (≥ 0.65 · 2c) with an
exceptionnally small cycle (≤ 2µ) and recover this cycle.

For random β’s, # candidates for β ≈ 1/ps,µ ≈ 2
c
2−µ

Recover the cycle length using Brent’s algorithm. complexity ≈ 2
c
2 applications of h

Total complexity: ≈ 2c−µ applications of h.

2 Online phase: Submit (N,C = βL,T ) queries where T = Ffinal (β||x), x in the cycle.

Set L = 3 · 2
c
2 so that xL−1 in the cycle with good probability

At most 2µ possible values for T .

Total complexity: ≈ 2
c
2+µ applications of h.

Balanced complexity: 2
3c
4
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Summary of our results

Beyond an asymptotic result

Total time complexity: ≤ 21 · 2 3c
4 .

Probability of success: ≥ 95%.

NB: almost always a key recovery (since forgery → state recovery → key recovery).

Applications

Modes of Norx v2, Ketje, KNOT and Keyak;

Attack of complexity 2148 on Xoodyak

Breaks a 184-bit security claim (corrected since).
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A new improvement [BHLS24]

Define a nested function gβ,γ from the cycle C of hβ to itself.

x0

x1x2
x3

x4
x5 x6

x0

x1
x2

x3

x4

x5
x6

Graph of gβ,γ
Graph of hβ

gβ,γ = hLβ ◦ hγ : x ∈ C 7−→ x ′ ∈ C with good probability.
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Nesting exceptional functions [BHLS24]

1 Find β s.t. hβ is exceptional.

Let 2µ ≪ 2c/2 be the cycle length of hβ .

2 Find γ s.t. gβ,γ is exceptional.

For a random γ, gβ,γ has cycle length 2µ/2 ≪ 2c/4.
Let 2ν(≪ 2c/4) be the cycle length of the exceptional gβ,γ .

3 One must only try 2ν tags, but the ciphertexts are a lot longer.

For µ = 2c/7 and ν = c/14, the balanced total complexity is 25c/7 < 23c/4.

Our best attack against duplex-based modes has complexity 22c/3.

It uses precomputations in the graph of hβ .
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Other contributions [BHLS24]

Generic attacks against hash combiners using (nested) exceptional functions.

Historically, those attacks use a bunch of cryptanalytic tools.

Joux’s multi-collisions, Diamond structure, Expandable messages,...

Using (classical) exceptional functions, we improve the best existing attacks against

XOR Combiner. M 7→ H1(M)⊕ H2(M) (preimage);

Zipper Hash. M 7→ H2(H1(IV,M),
←−
M) (second preimage);

Hash-Twice. M 7→ H2(H1(IV,M),M) (second preimage, second preimage quantum).
←−
M
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Key take-aways

Functional graphs have many applications in generic cryptanalysis.

Our contribution [GKHR23,BHLS24]

Showing the applicability of functional graph techniques to AE modes.

First use of exceptional behaviour of random functions.

Bridging the gap between provable security and practical attacks.

A variant of our attack w/ computational complexity O(2c) is ‘tight’. [Lef24]

Beyond asymptotic results: break of a security assumption of Xoodyak.

Improving a long series of attacks on hash combiners.
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Perspectives and fun follow-up questions

Fully specified primitives

Finding exceptional functions on real-life permutations using their specification.

Building a backdoor permutation that ‘looks’ secure, but with a known exceptional function.

Overall goal: Bridging the gap between provable security and cryptanalysis.

What about the quantum setting?

Removing residual heuristics

Heuristic assumptions on the distribution of t(x0) for x0 in an exceptional component.

Experimentally verified.

Thank you for your attention!
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