

Generic attacks using random functions statistics

Rachelle Heim Boissier

Université Catholique de Louvain

March, 2025

Symmetric cryptology

Symmetric cryptology studies algorithms allowing two entities that share a common secret, the key K, to communicate in a secure manner*

Symmetric cryptology

Symmetric cryptology studies algorithms allowing two entities that share a common secret, the key K, to communicate in a secure manner*

*... as well as some 'keyless' algorithms such as hash functions.

Building symmetric algorithms

Cryptography relies on building blocks called *primitives* used within *modes of operation* or *constructions* to build more complex algorithms.

- The notion of primitive is *relative*.
- Most primitives do not provide a standalone cryptographic mechanism on their own.

Primitives

• A block cipher of key size κ bits and block size n bits is a function

$$\begin{array}{ccccc} E & : & \mathbb{F}_2^\kappa \times \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2^n \\ & & (K,X) & \longmapsto & E(K,X) \end{array}$$

such that for any key K, $E_{\mathcal{K}}(\cdot) \coloneqq E(\mathcal{K}, \cdot)$ is a permutation of \mathbb{F}_2^n .

• A public permutation P over \mathbb{F}_2^n does not depend on a key.

Modes/constructions

Security in cryptography (1/2)

Two main approaches:

- Provable security: reducing the security of a scheme to some 'reasonable' assumption.
 - How do we assess the reasonability of our assumption?
- Cryptanalysis: security analysis effort.
 - If the international cryptographic community cannot break it, then, hopefully, noone else can.
 - International standardisation competitions organised by the NIST.
 - The cryptanalysis effort be global, continuous and comprehensive.

Security in cryptography (2/2)

Primitive security

- can only be guaranteed through cryptanalysis.
- More or less well-defined security assumptions.

Mode/construction security

- Proved under the assumption that the primitive is secure.
- Proofs provide a partial information on the security level.
- Cryptanalysis, and in particular generic attacks, provides a complementary point of view.

A generic attack assumes an ideal behaviour of the underlying primitive.

Elementary ex: generic key recovery attack on *E* given *X* and $Y = E_K(X)$.

• Exhaustively try the 2^{κ} possible secret keys.

This talk

- Symmetric cryptanalysis.
- Generic attacks against a variety of iterated constructions:
 - Hash functions;
 - Message Authentication Codes (MAC) modes;
 - Authenticated encryption (AE) modes.
- Our main tool: random functions graphs statistics.

Outline

1 Random function statistics

2 Memory-negligible collision search

3 State recovery attack against HMAC

4 Generic attack against AE modes

5 Conclusion

Random functions

 \mathfrak{F}_N is the set of functions which map a finite set of size $N \in \mathbb{N}^*$ to itself.

Our main focus:

The graph of f, denoted by G(f), is a directed graph such that an edge goes from node i to node j if and only if f(i) = j.

Properties and statistics of functional graphs are used in generic attacks.

Functional graphs: an example

The graph of f, denoted by G(f), is a directed graph such that an edge goes from node i to node j if and only if f(i) = j.

$$f : [0;7] \longrightarrow [0;7] \\ \begin{cases} 0 & \longmapsto 2 \\ 1 & \longmapsto 1 \\ 2 & \longmapsto 3 \\ 3 & \longmapsto 5 \\ 4 & \longmapsto 2 \\ 5 & \longmapsto 7 \\ 6 & \longmapsto 1 \\ 7 & \longmapsto 3 \end{cases}$$

Functional graphs (1)

Definitions.

- The graph of *f* can be seen as a set of connected components.
- Each connected component has a unique cycle.
- Each cyclic node is the root of a tree.

Statistics (e.g. [FO89]).

- Expected size of *f*'s largest component: 0.76*N*
- Expected size of f's largest tree: 0.48N

Functional graphs (2)

For any $x_0 \in G(f)$

• $(x_i := f^i(x_0))_{i \in \mathbb{N}}$ is eventually periodic.

• $(x_i)_{i \in \mathbb{N}}$ graphically corresponds to a path linked to a cycle.

Functional graphs (2)

For any $x_0 \in G(f)$

- $(x_i := f^i(x_0))_{i \in \mathbb{N}}$ is eventually periodic.
- $(x_i)_{i \in \mathbb{N}}$ graphically corresponds to a path linked to a cycle.

Definitions.

- **Tail length** $t(x_0)$: smallest *i* s.t. x_i is in the cycle.
- Cycle length $\ell(x_0)$: number of nodes in the cycle.

Statistics. For x a random node:

- Expected value of its tail length t(x): $\sqrt{\pi N/8}$.
- Expected value of its cycle length $\ell(x)$: $\sqrt{\pi N/8}$.

Outline

1 Random function statistics

2 Memory-negligible collision search

3 State recovery attack against HMAC

4 Generic attack against AE modes

5 Conclusion

Definition. A cryptographic hash function is a function $H: \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that

- Preimage resistance. Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. H(M) = D;
- Second preimage resistance. Given M, it is difficult to find $M' \neq M$ s.t. H(M') = H(M);
- Collision resistance. It is difficult to find (M, M'), $M \neq M'$ such that H(M) = H(M').

Definition. A cryptographic hash function is a function $H: \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that

- Preimage resistance. Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. H(M) = D;
- Second preimage resistance. Given M, it is difficult to find $M' \neq M$ s.t. H(M') = H(M);
- Collision resistance. It is difficult to find (M, M'), $M \neq M'$ such that H(M) = H(M').

Generic collision attack: Compute H(M) for $O(2^{n/2})$ messages M, store M at the address H(M).

Definition. A cryptographic hash function is a function $H: \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that

- Preimage resistance. Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. H(M) = D;
- Second preimage resistance. Given M, it is difficult to find $M' \neq M$ s.t. H(M') = H(M);
- Collision resistance. It is difficult to find (M, M'), $M \neq M'$ such that H(M) = H(M').

Generic collision attack: Compute H(M) for $O(2^{n/2})$ messages M, store M at the address H(M).

Memory complexity is also a $O(2^{n/2})$.

Definition. A cryptographic hash function is a function $H: \mathbb{F}_2^* \to \mathbb{F}_2^n$ such that

- Preimage resistance. Given $D \in \mathbb{F}_2^n$, it is difficult to find $M \in \mathbb{F}_2^*$ s.t. H(M) = D;
- Second preimage resistance. Given M, it is difficult to find $M' \neq M$ s.t. H(M') = H(M);
- Collision resistance. It is difficult to find (M, M'), $M \neq M'$ such that H(M) = H(M').

Generic collision attack: Compute H(M) for $O(2^{n/2})$ messages M, store M at the address H(M).

Memory complexity is also a $O(2^{n/2})$.

Solution: a generic memory-negligible collision attack using functional graphs.

A memory-negligible collision attack on H

Let $f \in \mathfrak{F}_{2^n}$ be defined as

$$\begin{array}{rccccc} f & : & \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2^n \\ & & x & \longmapsto & H(x) \, . \end{array}$$

Step 1. A cycle finding algorithm allows to recover a cyclic node x_c

- in time $O(2^{n/2})$;
- using a negligible amount of memory.
- Step 2. Using x_c , one can
 - recover the cycle length $\ell(x_c)$,
 - find a collision on f, and thus on H,
- in time $O(2^{n/2})$ and with negligible memory.

parameters: $f\in \mathfrak{F}_{2^n}$

- 1: $x_0 \leftarrow_R \mathbb{F}_2^n$
- 2: *turtle*, *hare* $\leftarrow x_0, x_0$
- 3: for i = 1 to $2^n 1$ do
- 4: $turtle \leftarrow f(turtle)$

5: hare
$$\leftarrow f^2(hare)$$

- 6: **if** turtle = hare **then**
- 7: **return** *turtle*
- 8: end if
- 9: end for

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = dist(x_t, x_{2t})$.

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = dist(x_t, x_{2t})$.

Then

 $dist(f(x_t), f^2(x_{2t})) = d_t + 1 \mod \ell$.

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = dist(x_t, x_{2t})$.

Then

 $dist(x_{t+k}, x_{2(t+k)}) = d_t + k \mod \ell$.

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = dist(x_t, x_{2t})$.

Then

 $dist(x_{t+k}, x_{2(t+k)}) = d_t + k \mod \ell$.

After at most $t + \ell$ tries, the algorithm finds *i* s.t. $x_i = x_{2i}$, and x_i is in the cycle.

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = dist(x_t, x_{2t})$.

Then

 $dist(x_{t+k}, x_{2(t+k)}) = d_t + k \mod \ell$.

After at most $t + \ell$ tries, the algorithm finds *i* s.t. $x_i = x_{2i}$, and x_i is in the cycle.

If f behaves like a random function, if x_0 is drawn at random, we expect $t = \ell = \sqrt{\pi/8} \cdot 2^{n/2}$.

The tail length $t = t(x_0)$ is the smallest j s.t. x_j in the cycle.

Let $d_t = dist(x_t, x_{2t})$.

Then

 $dist(x_{t+k}, x_{2(t+k)}) = d_t + k \mod \ell$.

After at most $t + \ell$ tries, the algorithm finds *i* s.t. $x_i = x_{2i}$, and x_i is in the cycle.

If f behaves like a random function, if x_0 is drawn at random, we expect $t = \ell = \sqrt{\pi/8} \cdot 2^{n/2}$.

Floyd's time complexity: $O(2^{n/2})$ evaluations of f, memory complexity is negligible.

d

A memory-negligible collision attack on H

Let $f \in \mathfrak{F}_{2^n}$ be defined as

$$\begin{array}{rccccc} f & : & \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2^n \\ & & x & \longmapsto & H(x) \, . \end{array}$$

Step 1. A cycle finding algorithm allows to recover a cyclic node x_c

- in time $O(2^{n/2})$;
- using a negligible amount of memory.
- Step 2. Using x_c , one can
 - recover the cycle length $\ell(x_c)$,
 - find a collision on f, and thus on H,
- in time $O(2^{n/2})$ and with negligible memory.

Outline

- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes

5 Conclusion

Message Authentication Code (MAC) algorithms

A Message Authentication Code algorithm (MAC) produces a fixed length tag that guarantees the integrity of the message.

Hash-based MACs

Hash functions can be used to build MACs.

- It is easy to build a secure MAC with an ideal hash function, i.e. a random oracle.
- With a real hash function, it is essential to study generic attacks.
- Several papers analyse the generic security of HMACs.

We present a 2013 state recovery attack by Leurent, Peyrin and Wang on HMAC [BCK96].

The tag generation iterates the function

$$egin{aligned} &h_eta:\mathbb{F}_2^n\longrightarrow\mathbb{F}_2^n\ &x\longmapsto h(eta,x)\,. \end{aligned}$$

For a random β , we expect h_{β} to behave as a function drawn at random in \mathfrak{F}_{2^n} .

■ Giant component with about 76% of the nodes.

• We expect x_1 to behave as a point drawn at random in the graph of h_β .

- With proba 0.76, x_1 is in the giant component.
- $t(x_1) = \ell(x_1) = \sqrt{\pi/8} \cdot 2^{n/2}$.

• Setting $L = cst \cdot 2^{n/2}$:

Graph of h_{β}

• Setting $L = cst \cdot 2^{n/2}$:

Graph of h_{β}

• Setting $L = cst \cdot 2^{n/2}$:

Graph of h_{β}

Idea 1: Building two messages who reach the same state

 $M_1 = \beta^L$ and $M_2 = \beta^{L+\ell}$ reach the same final state.

Two issues: \neq message lengths + the state is not recovered.

Idea 1: Building two messages who reach the same state

 $M_1 = \beta^L$ and $M_2 = \beta^{L+\ell}$ reach the same final state.

Two issues: \neq message lengths + the state is not recovered.

Idea 1: Building two messages who reach the same state

 $M_1 = \beta^L$ and $M_2 = \beta^{L+\ell}$ reach the same final state.

Two issues: \neq message lengths + the state is not recovered.

Idea 2: reach the cycle twice

Still no state recovery. Idea 3: use the root of the main tree α .

Outline

- 1 Random function statistics
- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes
- 5 Conclusion

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

- Assuming a nonce-respecting adversary
- and no release of unverified plaintext.

Duplex-based AE modes

Authenticated Encryption

- (Historically) block-cipher based: (tweakable) block cipher + mode
- (More recently) permutation-based: public permutation + keyed mode

Permutation-based modes of operation [BDPVA11]

- Many candidates at the NIST lightweight competition (2018-2023), including the winner ASCON.
- Modes are proven secure when instantiated with a random permutation.
- It is difficult to assess this 'assumption' in practice \rightarrow cryptanalysis.

Duplex-based AE modes [BDPVA11,DMV17]

Encryption

- Permutation P operates on a state of length b = r + c bits, r is the rate, c the capacity.
- First r bits: the outer state
- Next c bits: the inner state

<u>Ex:</u> Cyclist (Xoodyak) r = 192, c = 192

Duplex-based AE modes [BDPVA11,DMV17]

Encryption

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.
Duplex-based AE modes [BDPVA11,DMV17]

Decryption/verification

Forgery attack: find a decryption query (N, C, T) s.t. the tag verification succeeds.

Duplex-based AE modes [BDPVA11,DMV17]

Decryption/verification

Guessing x_{l-1} allows to build a forgery.

Disclaimer: this is simplified Security of duplex-based modes

Assuming a sufficiently large key/tag/state length: Time complexity 2^{c/2} 2^c Provable security
[BDPVA11]

Security of duplex-based modes

 $\alpha : \text{ small constant}$

Assuming a sufficiently large key/tag/state length:

Security of duplex-based modes

 α : small constant

Assuming a sufficiently large key/tag/state length:

Disclaimer: this is simplified Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

.

I me complexity	2 ^{c/2}	$2^c/\sigma_d$	$2^c/\alpha 2^c$
Provable se	curity	beyond birthday?	Generic attacks
	[BDPVA11]	[JLMSY19]	[JLM14] [JLMSY19]

 α : small constant σ_d : number of online calls to *P* caused by forgery attempts

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

 α : small constant σ_d : number of online calls to *P* caused by forgery attempts

Disclaimer: this is simplified Security of duplex-based modes

 σ_d : number of online calls to P caused by forgery attempts

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length: Time complexity

 α : small constant

 σ_d : number of online calls to P caused by forgery attempts

Generic Attack on Duplex-Based AEAD Modes Using Random Function Statistics. Gilbert, Heim Boissier, Khati, Rotella. EUROCRYPT 2023

Security of duplex-based modes

Assuming a sufficiently large key/tag/state length:

 α : small constant

 σ_d : number of online calls to P caused by forgery attempts

Improving Generic Attacks Using Exceptional Functions. Bonnetain, Heim Boissier, Leurent, Schrottenloher. CRYPTO 2024

Verification ($C = C_0 || \cdots || C_{L-1}, T$)

Verification ($C = C_0 || \cdots || C_{L-1}, T$)

We define a compression function h induced by P:

$$\begin{aligned} h: \mathbb{F}_2^b &\longrightarrow \mathbb{F}_2^c \\ x &\longmapsto \lfloor P(x) \rfloor_c \,. \end{aligned}$$

Verification (β^L , T)

We define a compression function h induced by P:

$$\begin{array}{c} h: \mathbb{F}_2^b \longrightarrow \mathbb{F}_2^c \\ x \longmapsto \lfloor P(x) \rfloor_c \, . \end{array}$$

Verification (β^L , T)

The tag verification iterates the function

$$egin{aligned} &h_eta: \mathbb{F}_2^c \longrightarrow \mathbb{F}_2^c \ &x\longmapsto h(eta,x)\,. \end{aligned}$$

Verification (β^L, T)

For a random β , we expect h_{β} to behave as a random function drawn in \mathfrak{F}_{2^c} .

For each nonce, we expect x_0 to behave as a random point drawn in the graph of h_β .

Main observation (2/2)

Graph of h_{β}

Main observation (2/2)

Graph of h_{β}

Main observation (2/2)

Graph of h_{β}

Main observation (2/2)

If one finds β s.t. h_{β} has a reasonably large component (say $\geq 0.65 \cdot 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

If one finds β s.t. h_{β} has a reasonably large component (say $\geq 0.65 \cdot 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

• x_0 belongs to the large component with good probability (≥ 0.65).

Graph of an exceptional h_{β}

If one finds β s.t. h_{β} has a reasonably large component (say $\geq 0.65 \cdot 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

• x_0 belongs to the large component with good probability (≥ 0.65).

If so, if L is 'large enough' $(L = cst \cdot 2^{\frac{c}{2}})$, x_{L-1} is in the small cycle with good probability.

Graph of an exceptional h_{β}

If one finds β s.t. h_{β} has a reasonably large component (say $\geq 0.65 \cdot 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

- x_0 belongs to the large component with good probability (≥ 0.65).
- If so, if L is 'large enough' $(L = cst \cdot 2^{\frac{c}{2}})$, x_{L-1} is in the small cycle with good probability.
- If so, there are at most $2^{\frac{c}{4}}$ possible values for x_{L-1} ; i.e., at most $2^{\frac{c}{4}}$ possible tags.

Graph of an exceptional h_{β}

If one finds β s.t. h_{β} has a reasonably large component (say $\geq 0.65 \cdot 2^c$) with an exceptionnally small cycle (say $\leq 2^{\frac{c}{4}}$)...

- x_0 belongs to the large component with good probability (≥ 0.65).
- If so, if L is 'large enough' $(L = cst \cdot 2^{\frac{c}{2}})$, x_{L-1} is in the small cycle with good probability.
- If so, there are at most $2^{\frac{c}{4}}$ possible values for x_{L-1} ; i.e., at most $2^{\frac{c}{4}}$ possible tags.

Resulting forgery attack: (1) precompute an exceptional h_{β} and (2) try the $\leq 2^{\frac{c}{4}}$ possible values for T.

A new statistic

Graph of an exceptional h_{β}

[DeLaurentis87]: Probability that a h_β has a component s.t.

- (exceptionally small cycle) $\ell \leq 2^{\mu}$ (e.g. $\ell \leq 2^{-c/4}$);
- (reasonably large size) of size $\geq 2^c \cdot s$ (e.g. size $\geq 0.65 \cdot 2^c$):

$$p_{s,\mu} \approx \sqrt{2(1-s)/\pi s} \cdot 2^{\mu-\frac{c}{2}}$$
 (e.g. $0.6 \cdot 2^{-\frac{c}{4}}$)

Forgery attack [GKHR23]

Precomputation phase: Find β s.t. h_{β} has a large component ($\geq 0.65 \cdot 2^c$) with an exceptionnally small cycle ($\leq 2^{\mu}$) and recover this cycle.

For random β 's,

Recover the cycle length using Brent's algorithm.

candidates for $\beta \approx 1/p_{s,\mu} \approx 2^{\frac{c}{2}-\mu}$ complexity $\approx 2^{\frac{c}{2}}$ applications of h

Total complexity: $\approx 2^{c-\mu}$ applications of *h*.

2 Online phase: Submit $(N, C = \beta^L, T)$ queries where $T = F_{final}(\beta || x)$, x in the cycle.

Set L = 3 · 2^{5/2} so that x_{L-1} in the cycle with good probability
 At most 2^μ possible values for T.

Total complexity: $\approx 2^{\frac{c}{2}+\mu}$ applications of *h*.

Balanced complexity: $2^{\frac{3c}{4}}$

Summary of our results

Beyond an asymptotic result

- Total time complexity: $\leq 21 \cdot 2^{\frac{3c}{4}}$.
- Probability of success: $\geq 95\%$.
- **I** NB: almost always a key recovery (since forgery \rightarrow state recovery \rightarrow key recovery).

Applications

- Modes of Norx v2, Ketje, KNOT and Keyak;
- Attack of complexity 2¹⁴⁸ on Xoodyak
 - Breaks a 184-bit security claim (corrected since).

Define a nested function $g_{\beta,\gamma}$ from the cycle \mathscr{C} of h_{β} to itself.

 $g_{\beta,\gamma} = h_{\beta}^{L} \circ h_{\gamma} : x \in \mathscr{C} \longmapsto x' \in \mathscr{C}$ with good probability.

Define a nested function $g_{\beta,\gamma}$ from the cycle \mathscr{C} of h_{β} to itself.

 $g_{\beta,\gamma} = h_{\beta}^{L} \circ h_{\gamma} : x \in \mathscr{C} \longmapsto x' \in \mathscr{C}$ with good probability.

Define a nested function $g_{\beta,\gamma}$ from the cycle \mathscr{C} of h_{β} to itself.

 $g_{\beta,\gamma} = h_{\beta}^L \circ h_{\gamma} : x \in \mathscr{C} \longmapsto x' \in \mathscr{C}$ with good probability.

Define a nested function $g_{\beta,\gamma}$ from the cycle \mathscr{C} of h_{β} to itself.

 $g_{\beta,\gamma} = h_{\beta}^L \circ h_{\gamma} : x \in \mathscr{C} \longmapsto x' \in \mathscr{C}$ with good probability.

Define a nested function $g_{\beta,\gamma}$ from the cycle \mathscr{C} of h_{β} to itself.

 $g_{\beta,\gamma} = h_{\beta}^L \circ h_{\gamma} : x \in \mathscr{C} \longmapsto x' \in \mathscr{C}$ with good probability.

Nesting exceptional functions [BHLS24]

- **1** Find β s.t. h_{β} is exceptional.
 - Let $2^{\mu} \ll 2^{c/2}$ be the cycle length of h_{β} .
- **2** Find γ s.t. $g_{\beta,\gamma}$ is exceptional.
 - For a random γ , $g_{\beta,\gamma}$ has cycle length $2^{\mu/2} \ll 2^{c/4}$.
 - Let $2^{\nu} (\ll 2^{c/4})$ be the cycle length of the exceptional $g_{\beta,\gamma}$.

3 One must only try 2^{ν} tags, but the ciphertexts are a lot longer.

For $\mu = 2c/7$ and $\nu = c/14$, the balanced total complexity is $2^{5c/7} < 2^{3c/4}$.

Our best attack against duplex-based modes has complexity $2^{2c/3}$.

■ It uses precomputations in the graph of h_{β} .

Other contributions [BHLS24]

- Generic attacks against hash combiners using (nested) exceptional functions.
- Historically, those attacks use a bunch of cryptanalytic tools.
 - Joux's multi-collisions, Diamond structure, Expandable messages,...
- Using (classical) exceptional functions, we improve the best existing attacks against
 - XOR Combiner. $M \mapsto H_1(M) \oplus H_2(M)$ (preimage);
 - **Zipper Hash**. $M \mapsto H_2(H_1(IV, M), \overleftarrow{M})$ (second preimage);
 - Hash-Twice. $M \mapsto H_2(H_1(IV, M), M)$ (second preimage, second preimage quantum).

Outline

1 Random function statistics

- 2 Memory-negligible collision search
- 3 State recovery attack against HMAC
- 4 Generic attack against AE modes

5 Conclusion

Key take-aways

Functional graphs have many applications in generic cryptanalysis.

Our contribution [GKHR23,BHLS24]

- Showing the applicability of functional graph techniques to AE modes.
- First use of exceptional behaviour of random functions.
- Bridging the gap between provable security and practical attacks.
 - A variant of our attack w/ computational complexity $O(2^c)$ is 'tight'. [Lef24]
- Beyond asymptotic results: break of a security assumption of Xoodyak.
- Improving a long series of attacks on hash combiners.
Perspectives and fun follow-up questions

Fully specified primitives

- Finding exceptional functions on real-life permutations using their specification.
- Building a backdoor permutation that 'looks' secure, but with a known exceptional function.

Overall goal: Bridging the gap between provable security and cryptanalysis.

What about the quantum setting?

Removing residual heuristics

- Heuristic assumptions on the distribution of $t(x_0)$ for x_0 in an exceptional component.
- Experimentally verified.

Thank you for your attention!