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Introduction: motivation and setting
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Hard learning problems

Learning With Error (LWE), Learning With Rounding (LWR), Learning Parity with Noise (LPN)
and their ring/module variants.

Central importance in post-quantum cryptography

m Encryption, Key encapsulation mechanisms: CRYSTALS-Kyber, Saber

m Signatures: CRYSTALS-Dilithium, BLISS

and in symmetric cryptography:
m Essentially to build (key homomorphic) PRFs for a variety of applications.

m E.g. distributed PRFs, proxy re-encryption, updatable encryption (Boneh et al., 2013)
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/ Learning V/Vi‘th Errors

In a nutshell: solving a noisy linear system over a ring.

Search Learning With Errors (Regev 05)

Parameters: g € N, n € N*, small (Gaussian) distribution x over Zg, secret x <i Zg

Given samples from the distribution
PWE = { (a, (a,x) +e), a(iZg, e+ x}

Find x.
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Search Learning With Errors (Regev 05)

Parameters: g € N, n € N*, small (Gaussian) distribution x over Zg, secret x <i Zg

Given samples from the distribution
PWE = { (a, (a,x) +e), a(iZZ, e+ x}
Find x.

Decision LWE: distinguish from %y = {(a,r) | a & Zy,r & Zq}
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Lk“e’af‘nlr‘lg With Erébrs

In a nutshell: solving a noisy linear system over a ring.

Search Learning With Errors (Regev 05)

Parameters: g € N, n € N*, small (Gaussian) distribution x over Zg, secret x <i Zg

Given samples from the distribution
PWE = { (a, (a,x) +e), ang, e+ x}
Find x.
Decision LWE: distinguish from %, = {(a,r) | a & VN & Zq}

m Security level is determined by n, g, and standard deviation o of .

m Drawback: LWE cannot be used to build deterministic primitives such as PRFs.

Boolean Modeling and Analysis of Learning With Rounding 3/31




Learnlng wifh‘ Ro/ﬁr;dlng ~~

‘A way of partially ‘derandomizing’ the LWE problem, i.e. generating errors efficiently and
deterministically’.
Banerjee, Peikert, Rosen, EC' 2012.

Search Learning With Rounding

Parameters: g € N, p,n € N*, p < q, rounding function |-, : Zq — Z,, secret x & Zy

Given samples from the distribution

PR — { (a,(a,x)]5), a & Z] }

Find x.
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Power-of-two LWR

Search Learning With Rounding

Parameters: g € N, p,n € N*, p < q, rounding function |-, : Zq — Z,, secret x & Zy

Given samples from the distribution

IR — { (a,52 = (a,x)]5), a & 70 }

Find x.
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Power-of-two
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Search Learning With Rounding

Parameters: g € N, p,n € N*, p < q, rounding function |-|2s : Zos — Zo», secret x & Z3,

Given samples from the distribution

PR = { (a,50 = (@, X)), a & 25, }

Find x.

Bool Mod
B 1

ling and Analysis of Learning With Rounding 5 /31



S SIS LS
Power-of-two LWR

Search Learning With Rounding

Parameters: g € N, p,n € N*, p < q, rounding function |-|2s : Zos — Zo», secret x & Z5,

Given samples from the distribution
TR = { (8,50 = L(@,x)],), a & 25 }
Find x.

In this case:
m rounding function |-|, : Zos — Zo» removes the g — p LSBs.
m Security level is determined by n, g and g — p: noise ~ Uniform[—297P,0)

e.g. LightSaber: n =512, g — p =3, dPRF LaKey n = 256,q — p = 4.
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Hardness

Theory
m LWE: Solid theoretical foundations (e.g. Brakerski et al. 13).

m LWR is as hard as LWE (asymptotic reduction, underlying assumptions).

Practice

m Parameter selection driven by best known attacks (Lattice estimator, Albrecht et al.)

‘The hardness of (ring or module) LWR can be analyzed as an LWE problem, since there is no
known attacks that make use of the additional structure offered by these variants’.
SABER specifications

Open question: what does a deterministic error do to (practical) security?
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Linearisation attack by Arora & Ge (2011)

Parameters: n € N*, Noise in set E.

Any sample (a, s,), yields the following equation over Zpq in the unknowns x = (xo, ..., x, 1)
n—1
H Za,- Xxi—e—5,| =0.
ecE \i=0

- - . . w . . .
Linearisation: ("TE“E‘) in data, ("TE“E‘) in time, w linear algebra constant.

m LWE: Gaussian distribution: bounded noise for a well-chosen number of samples.

m LWR: |E| = 20P.
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Linearisation attack by Arora & Ge (2011)

Parameters: n € N*, Noise in set E.

Any sample (a, s,), yields the following equation over Zpq in the unknowns x = (xo, ..., x, 1)
n—1
1 (z x> 0.
ecE \i=0

- - . . w . . .
Linearisation: ("TE“E‘) in data, ("TE“E‘) in time, w linear algebra constant.

m LWE: Gaussian distribution: bounded noise for a well-chosen number of samples.
m LWR: |[E| =297,
Our observation: inapplicable for some parameter regimes independently of the nr of samples.
Our main result: in the case of LWR, one can do an attack that 1) works 2) better.
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A symmetric point of view
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A symmetric point of view

Zoa ~ {0,1,2,...,29 -1} ~ F]
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A symmetric point of view

Zoa =~ {0,1,2,...,29 -1} =~ TJ

m n known values a; € Zos =~  nq known bits (a; )o<i<n—1 € F5°.
0<j<q-1

m n unknowns x; in Zos =~  nq binary unknowns (x; )o<i<n—1 € F5".
- 0<j<q-1
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A symmetric point of view

Zoo ~ {0,1,2,...,29-1} ~ F{

m n known values a; € Zos  ~  nqg known bits (a; )o<i<n—1 € F5".
0<j<g-1
m n unknowns x; in Zos

ng binary unknowns (x; ;)o<i<n—1 € F5°.
0<j<q-1

The LWR function is a (2ng, p)-vectorial Boolean function:

n—1
F:F?xF —-F5  (a,x)— Za,-xx,—
i=0

2P

The LWR problem can be studied in a “symmetric’ manner (~ weak-PRF).
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Exponential notation

If ug,...,un_1,v0,...,Vp_1 are g-bit integers:

a“x* =[] ] a9
J

i

Consider M = aggap 1a1,0a1,121,2X0,0X1,0X1,1 -

We denote it by M = a8bo11acl)m11X(c)>boo1xi)bo11 — a(37),(13).
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Algebraic Normal Form

Algebraic Normal Form (ANF). Any Boolean function f : F§ — F, admits a unique multivariate
polynomial form:

Vx €5, f(x)= > au(f)x".

uels
Product of coordinates. For any F : Zos — Zys, and any m =}, m;2', recall:
x = (FO))™ =[] Fe)™.
i
In the following, we study (products of) coordinates of the inner product:

F™m: (a,x) — ((a,x))"
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F,[a, x] or Fy[a][x] ?

F™:(Zaq)" x (Z2a)" — T2 If m=297P: coordinate of index g — p
(a,x) +— ({a,x))". (LSB of the sample).

Boolean Modeling and Analysis of Learning With Rounding 12 / 31



F,[a, x] or Fy[a][x] ?

F™:(Zaq)" x (Z2a)" — T2 If m=297P: coordinate of index g — p
(a,x) +— ({a,x))". (LSB of the sample).

Fz[a, X].
m,n __ u v
F = E oy va'x", o,y € Fo.
u,v
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F,[a, x] or Fy[a][x] ?

F™:(Zaq)" x (Z2a)" — T2 If m=297P: coordinate of index g — p
(a,x) +— ({a,x))". (LSB of the sample).

IF2[3, X].
m,n __ u_v
[FH = E oy va'x", o,y € Fo.
u,v

F>[a][x].
Fmn — Z (Z al,’,,a“) x", ay € Fylal.
v u
—_——
Ay
m Cost of linearisation < #monomials® = |Exp, (F™")|* with Exp, (F™") = {v |a, # 0} .
m Linearisation is possible only if the ANF of each «a, is known (We'll get back to it...)
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Results
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Set of exponents of F™"

Ordered integer partitions. Let S] = {v € N": 0 vi = k} be the set of n-long
vectors that sum to k.
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Set of exponents of F™"

Ordered integer partitions. Let S] = {v € N": o vi = k} be the set of n-long
vectors that sum to k.

Theorem (Exponents of F™").

Exp,(F™") c | J S¢.

i.e. if &y # 0 then v must satifsy 27:_01 vi < m.
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Set of exponents of F™"

Ordered integer partitions. Let S] = {v € N": o vi = k} be the set of n-long
vectors that sum to k.

Theorem (Exponents of F™").
Exp, (F™") U sy
i.e. if ay # 0 then v must satifsy 3275 v; < m.

m Proven using [Braeken & Semaev FSEO05].
If G(X) =x0+ X1+ + Xn_1 € Zpq, then Epr(Gm) =

m Related to the properties of S-functions. [MouCanIndPre09]
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An attack that works and costs the same (in fact, a little less)

= Number of monomials. |Exp,(F™")| < |Up_; Sfl = ("I7).

m
Open question: we conjecture equality when m is a power of two.

m Degree. deg(F™") < m. Equality holds when m < n.
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= Number of monomials. |Exp,(F™")| < |Up_; Sfl = ("I7).

m
Open question: we conjecture equality when m is a power of two.

m Degree. deg(F™") < m. Equality holds when m < n.

n29—P

= Recall over Zyqs (when applicable): ("5;_, ) monomials. [Arora & Ge]
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An attack that works and costs the same (in fact, a little less)

Number of monomials. |Exp, (F™")| < |Up_; SpI = ("E™).

m
Open question: we conjecture equality when m is a power of two.

Degree. deg(F™") < m. Equality holds when m < n.

n424—p
29—p

Recall over Zq (when applicable): ( ) monomials. [Arora & Ge]

If we use the LSB of the sample (m = 297P), same number of monomials (Surprising!).
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An attack that works and costs the same (in fact, a little less)

Q , m __ (ntm
Number of monomials. |Exp, (F™")| < |Ur; 7= ("17).
Open question: we conjecture equality when m is a power of two.

Degree. deg(F™") < m. Equality holds when m < n.

n424—p
29—p

Recall over Zq (when applicable): ( ) monomials. [Arora & Ge]

If we use the LSB of the sample (m = 297P), same number of monomials (Surprising!).

Working over [, rather than Zyq: we gain at least 297P.
it's a field.
operations are cheaper
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The general strategy

With (";Zj;p) samples, recover the g — p LSBs of each x; by linearisation.
Observe that each bit of (a, x) satisfies b; = 7;01 a; jx;j + c¢; where ¢; is a carry.
Compute ¢; from the known a; ,'s and recovered x; s, k < j.

Solve a linear system in x;; only.

Repeat for increasing j.

The cost of steps 2 to 5 is negligible before the cost of step 1.
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Effective computation of the ANF

We improve Arora & Ge generically. . .
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Effective computation of the ANF

We improve Arora & Ge generically. . . as long as we can compute the ANF.
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Effective computation of the ANF

We improve Arora & Ge generically. .. as long as we can compute the ANF.

This is a priori hard:
m Mdbius transform is out of reach (the LUT cannot be fully computed/stored).

m Direct computations using recursive formulas seem hopeless.

Our results

The ANF can be ‘understood’ for arbitrary large n and for m up to 16 by:

m storing the ANF for n = m.

m computing properties for arbitrary large n.
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Additional improvement of the attack

Default linearisation: one auxiliary variable per monomial xV in the ANF of F™".

Example.
/ "
F(a,x) = ayx" + ayx" +aynx’ +--- Qy, ayr, ayr € Fala]

V/ v//

m If a, = ay = ayr, then x¥, x¥, x¥ appear/vanish together for any value of a.

. ! "
m |t makes sense to introduce y = x¥ + x" + x" .
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Additional improvement of the attack

Default linearisation: one auxiliary variable per monomial xV in the ANF of F™".

Example.
F(a,x) = avx’ + ayx" +aynx* + - a, s,y € Fola]
m If o, = ) = aynr, then x¥, x¥', x"" appear/vanish together for any value of a.
m It makes sense to introduce y = x¥ 4+ x"' + x*".
m Less auxiliary variables: improved linearisation (data and time).
m Ideally: compute the rank and a basis for {«,, v € Exp(F™")}. Work in progress
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Additional improvement of the attack

Default linearisation: one auxiliary variable per monomial xV in the ANF of F™".

Example.
/ "
F(a,X):avxv+av/xV + oy x’ + .- Ay, Ay, Qyrr GIE"2[‘3]
! " .
m If a, = ay = ayr, then x¥, x¥, x¥ appear/vanish together for any value of a.
. v v v
m |t makes sense to introduce y = x¥ + x" + x" .

m Less auxiliary variables: improved linearisation (data and time).

m Ideally: compute the rank and a basis for {«,, v € Exp(F™")}. Work in progress
m In practice, we compute the generating family @™" made of distinct a,,'s. m < 16.
m The average sparsity for both families (monomials, @™"). m < 8.
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Our results: Upper bound on the rank

Ratio |Q™"| /(") — 1 as a function of n, for n € [m,4096].

20
2_1 —_— m=2
— m=4
— m=38
2721 — m=16
21 22 23 24 25 26 27 28 29 210 o1 212
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Our results: Sparsity

Average fraction of terms in a random equation F;""(x) as a function of n.

2_1 "\
D e —
-5 | Bl S
2 EXp(F™") o TS
- m=2 -—— m=2 \*\\
-7 — m=4 -—— m=4 Tl
—— m=38 ---m=8 . TTTTeee
21 22 23 2 2 26 27 28 20 2lo ol o2
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Improvements over Arora-Ge

Comparison to the linearisation attack by Arora & Ge using w = 3.
and cost of modular addition/multiplication m = 29-F.

Our work Our work
— 2q—p -
m =2 n | Arora-Ge (< rank only) | (< rank and sparsity)
64 103.4 297.8 87.2
8 128 2126.3 2121A8 2110A8
256 2149.7 2145.9 2134.7
64 2167.7 2157.2 Non-available
16 128 22117 2202.00 Non-available
256 22575 22501 Non-available
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Some intuition
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Overview

Our result

The ANF (and additionnal properties) can be understood for arbitrary large n and for m up to 16.

NB: these m's are used in practice e.g. m = 8 for SABER, m = 16 for LaKEY.

We take advantage of symmetries due to the commutativity of modular addition.
Observe that:

® ((ao0,a1), (x0, x1)) = aoxo + a1x1 = aix1 + aoxo = ((a1, @), (x1,x0))-
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Our result
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Observe that:

® ((ao0,a1), (x0, x1)) = aoxo + a1x1 = aix1 + aoxo = ((a1, @), (x1,x0))-

m More generally for any n and any permutation o € &, (a,x) = (0 - a,0 - x).
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Overview

Our result

The ANF (and additionnal properties) can be understood for arbitrary large n and for m up to 16.

NB: these m's are used in practice e.g. m = 8 for SABER, m = 16 for LaKEY.

We take advantage of symmetries due to the commutativity of modular addition.
Observe that:

® ((ao0,a1), (x0, x1)) = aoxo + a1x1 = aix1 + aoxo = ((a1, @), (x1,x0))-

m More generally for any n and any permutation o € &, (a,x) = (0 - a,0 - x).

Observe that:

m ((ao,a1,0), (x0,x1,0)) = aoxo + arx1 = ((a0, a1), (X0, x1))-
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Overview

Our result

The ANF (and additionnal properties) can be understood for arbitrary large n and for m up to 16.

NB: these m's are used in practice e.g. m = 8 for SABER, m = 16 for LaKEY.

We take advantage of symmetries due to the commutativity of modular addition.
Observe that:

® ((ao0,a1), (x0, x1)) = aoxo + a1x1 = aix1 + aoxo = ((a1, @), (x1,x0))-

m More generally for any n and any permutation o € &, (a,x) = (0 - a,0 - x).

Observe that:

m ((ao,a1,0), (x0,x1,0)) = aoxo + arx1 = ((a0, a1), (X0, x1))-

= More generally for any n < n’, (a|[0" =", x|[0" "), = (a, X),.
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Reduction to a system of representatives

u The group &, acts on vectors of length n: o - u = (Uy-1(0), .-, Us-1(n-1))-

m F(a,x) is S,-invariant if F(a,x) = F(o-a,o - x) for all o € &,,.
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Reduction to a system of representatives

u The group &, acts on vectors of length n: o - u = (Uy-1(0), .-, Us-1(n-1))-

m F(a,x) is S,-invariant if F(a,x) = F(o-a,o - x) for all o € &,,.

Example. The function F : (a, x) — at9)x3.0) 1 a(0.1)x(0.3) js &,-invariant (not symmetric!)

Indeed, G, ={id,(0 1)} and (01)- F=F((01)-a,(0 1) x)= F(a,x).
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Reduction to a system of representatives

u The group &, acts on vectors of length n: o - u = (Uy-1(0), .-, Us-1(n-1))-

m F(a,x) is S,-invariant if F(a,x) = F(o-a,o - x) for all o € &,,.

Example. The function F : (a, x) — at9)x3.0) 1 a(0.1)x(0.3) js &,-invariant (not symmetric!)
Indeed, G, ={id,(0 1)} and (01)- F=F((01)-a,(0 1) x)= F(a,x).

B Q(1,0),(3,0) = ©(0,1),(0,3)- B agg) =al? £ a0l = .

Boolean Modeling and Analysis of Learning With Rounding 24 / 31



Reduction to a system of representatives

u The group &, acts on vectors of length n: o - u = (Uy-1(0), .-, Us-1(n-1))-

m F(a,x) is S,-invariant if F(a,x) = F(o-a,o - x) for all o € &,,.

Example. The function F : (a, x) — at9)x3.0) 1 a(0.1)x(0.3) js &,-invariant (not symmetric!)
Indeed, G, ={id,(0 1)} and (01)- F=F((01)-a,(0 1) x)= F(a,x).

B Q(1,0),(3,0) = ©(0,1),(0,3)- B agg) =al? £ a0l = .

For any m, n, F™" is & -invariant. & -invariance is equivalent to:
[ Yu,v,o, Aouov) = X(u,v) oy € Fo
m and to Vu,o, Oy = g1, ay € Fyla]
Allows to represent the ANF in a compact way.
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Scaling

How do we get results for arbitrary n?

Example. Let'’s look at the Gs-invariant function

F(2)((ao, 31), (Xo,Xl)) = a(l'o)x(3'0) =F a(o'l)X(O‘3) .

then there exists a ~ unique Ss-invariant function F®) such that

((307 a1)a (Xo, Xl)) = F(S)((a()v ai, O)a (XO* X1, 0))
is equal to F@:

,_-(3)((30’ a1, a2), (X0, X1, %2)) 2(1:0.0),(3.0.0) 4 2(01,0),(0.30) | 7(0,0,1),(0,03)

(Properties of) F™" can be derived from F™™.
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A taste of the algorithms
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Group actions

Let G be a group acting on a set E. Let x € E.
= Orbit. Orb(x) .= {0 x, 0 € G} C E.
m Stabilizer. Stab(x) := {0, 0-x =x} <G.

Example. Let v = (3,1,1). Then Orb(v) = {(3,1,1),(1,3,1),(1,1,3)} and Stab(v) = {id, (1 2)}.

Important properties.
m The set of orbits {Orb(x), x € E} is a partition of E.

m It induces an equivalence relation: x ~ x’ if and only if x' € Orb(x).

m For any x € E,
|Orb(x)| - [Stab(x)| = |G| .
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Effective computation of the ANF

Recall: S/ ordered partitions of length n of m.
F™"(a,x) = (a,x)" = ( i i)m = i X X;)©
(a,x) = (a,x) Z a; X X, (Erasemos] CEZSH H(a X X;)

Let 4 be a system of representatives (unordered partitions):

H ’

Fmn = —Z Z Ha,xx,

ces) ¢’eO0rb(c i

m
Ge

We observe:
m G, is G,-invariant.

m Hoc=01 H.
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Effective computation of the ANF

Theorem. Let ¢ € Z3q, (u,v) € Z3q X Z3q. Define Ec(u, v) := Exp(Hc) N Orb(u, v).

_ |Ec(u, v)| n!
wn(Ce) = sppo[om )] Y2
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Effective computation of the ANF

Theorem. Let ¢ € Z3q, (u,v) € Z3q X Z3q. Define Ec(u, v) := Exp(Hc) N Orb(u, v).

_ |Ec(u, v)| n!
cwn(C) = eeroom )] MY 2

We provide algorithms (and implementations) to:
(i) compute the ANF of Hex for ¢* € €.
(ii) compute a SoR of the ANF of G. (Theorem). {(u,v)", o,y (Ge) = 1}.
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Theorem. Let ¢ € Z3q, (u,v) € Z3q X Z3q. Define Ec(u, v) := Exp(Hc) N Orb(u, v).

_ |Ec(u, v)| n!
cwn(C) = eeroom )] MY 2

We provide algorithms (and implementations) to:

(i) compute the ANF of Hex for ¢* € €.

(ii) compute a SoR of the ANF of G. (Theorem). {(u,v)", o,y (Ge) = 1}.
(iii) compute a SoR of the ANF of F™" from the G.'s. {(u,v)", o~ (F™") = 1}.
(iv) compute {(v*, v« (F™") #0)}. (non-trivial from (iii)).
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Theorem. Let ¢ € Z3q, (u,v) € Z3q X Z3q. Define Ec(u, v) := Exp(Hc) N Orb(u, v).

_ |Ec(u, v)| n!
cwn(C) = eeroom )] MY 2

We provide algorithms (and implementations) to:

(i) compute the ANF of Hex for ¢* € €.

(ii) compute a SoR of the ANF of G. (Theorem). {(u,v)", o,y (Ge) = 1}.
(iii) compute a SoR of the ANF of F™" from the G.'s. {(u,v)", o~ (F™") = 1}.
(iv) compute {(v*, v« (F™") #0)}. (non-trivial from (iii)).
(v) compute {a € Exp, (F™")}/ ~ C F2lal. (even less trivial).
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Ex. of scaling: number of monomials

Recall. For each random a, if we can compute the ANF of FJ"", we obtain an equation in the secret x:

F™"(a,x) = Z ay(F™")(a) x¥ = LSB of the sample.

ve(F3)"
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Recall. For each random a, if we can compute the ANF of FJ"", we obtain an equation in the secret x:

F™"(a,x) = Z ay(F™")(a) x¥ = LSB of the sample.

VE(]Fg)"
m Our algorithm (iv) returns {(v*, a» # 0)}.

Nr of monomials = |{v : a, #0} =>_,. ., Orb(av*)(|5up:(v*)|)
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Ex. of scaling: number of monomials

Recall. For each random a, if we can compute the ANF of FJ"", we obtain an equation in the secret x:

F™"(a,x) = Z ay(F™")(a) x¥ = LSB of the sample.

VE(]Fg)"
m Our algorithm (iv) returns {(v*, a» # 0)}.
Nr of monomials = [{v : a, #0} =3",. , Orb(av*)(|5up:(v*)|)

In practice, when m is a power of two, this is always equal to the upper bound (") — 1.

m In general, scaling is not the hard part (even for other properties).
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Conclusion

Results

m Deterministic noise impacts attacks.

m Generic improvement (and “correction”) of Arora & Ge:

m same number of monomials + working over F».

m computation of additional parameters.

Many open questions

m Understanding the ANF even better (e.g. rank).

m Help us solve this system (with less data)!

m E.g. super structured ANF guides guess-and-solve strategies.

m More applications of group actions.
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