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Hard learning problems

Learning With Error (LWE), Learning With Rounding (LWR), Learning Parity with Noise (LPN)

and their ring/module variants.

Central importance in post-quantum cryptography

Encryption, Key encapsulation mechanisms: CRYSTALS-Kyber, Saber

Signatures: CRYSTALS-Dilithium, BLISS

and in symmetric cryptography:

Essentially to build (key homomorphic) PRFs for a variety of applications.

E.g. distributed PRFs, proxy re-encryption, updatable encryption (Boneh et al., 2013)
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Learning With Errors

In a nutshell: solving a noisy linear system over a ring.

Search Learning With Errors (Regev 05)

Parameters: q ∈ N, n ∈ N∗, small (Gaussian) distribution χ over Zq, secret x $← Zn
q

Given samples from the distribution

DLWE = { (a, ⟨a, x⟩+ e), a $← Zn
q, e ← χ }

Find x .

Decision LWE: distinguish from D0 = {(a, r) | a $← Zn
q, r

$← Zq}

Security level is determined by n, q, and standard deviation σ of χ.

Drawback: LWE cannot be used to build deterministic primitives such as PRFs.
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Learning with Rounding

‘A way of partially ‘derandomizing’ the LWE problem, i.e. generating errors efficiently and
deterministically’.

Banerjee, Peikert, Rosen, EC’ 2012.

Search Learning With Rounding

Parameters: q ∈ N, p, n ∈ N∗, p < q, rounding function ⌊·⌋p : Zq → Zp, secret x $← Zn
q

Given samples from the distribution

DLWR = { (a, ⌊⟨a, x⟩⌋p), a $← Zn
q }

Find x .

Boolean Modeling and Analysis of Learning With Rounding 4 / 31



Power-of-two LWR

Search Learning With Rounding

Parameters: q ∈ N, p, n ∈ N∗, p < q, rounding function ⌊·⌋p : Zq → Zp, secret x $← Zn
q

Given samples from the distribution

DLWR = { (a, sa = ⌊⟨a, x⟩⌋p), a $← Zn
q }

Find x .

In this case:

rounding function ⌊·⌋p : Z2q → Z2p removes the q − p LSBs.

Security level is determined by n, q and q − p: noise ∼ Uniform[−2q−p, 0)

e.g. LightSaber: n = 512, q − p = 3, dPRF LaKey n = 256, q − p = 4.
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Hardness

Theory

LWE: Solid theoretical foundations (e.g. Brakerski et al. 13).

LWR is as hard as LWE (asymptotic reduction, underlying assumptions).

Practice

Parameter selection driven by best known attacks (Lattice estimator, Albrecht et al.)

‘The hardness of (ring or module) LWR can be analyzed as an LWE problem, since there is no
known attacks that make use of the additional structure offered by these variants’.

SABER specifications

Open question: what does a deterministic error do to (practical) security?
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Linearisation attack by Arora & Ge (2011)

Parameters: n ∈ N∗, Noise in set E .
Any sample (a, sa), yields the following equation over Z2q in the unknowns x = (x0, . . . , xn−1)

∏
e∈E

(
n−1∑
i=0

ai × xi − e − sa

)
= 0 .

Linearisation:
(n+|E |

|E |
)

in data,
(n+|E |

|E |
)ω

in time, ω linear algebra constant.

LWE: Gaussian distribution: bounded noise for a well-chosen number of samples.

LWR: |E | = 2q−p.

Our observation: inapplicable for some parameter regimes independently of the nr of samples.

Our main result: in the case of LWR, one can do an attack that 1) works 2) better.
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A symmetric point of view

Z2q ≃ {0, 1, 2, . . . , 2q − 1} ≃ Fq
2

n known values ai ∈ Z2q ≃ nq known bits (ai,j)0≤i≤n−1
0≤j≤q−1

∈ Fnq
2 .

n unknowns xi in Z2q ≃ nq binary unknowns (xi,j)0≤i≤n−1
0≤j≤q−1

∈ Fnq
2 .

The LWR function is a (2nq, p)-vectorial Boolean function:

F : Fnq
2 × Fnq

2 → Fp
2 (a, x) 7→

⌊
n−1∑
i=0

ai × xi

⌋
2p

The LWR problem can be studied in a “symmetric” manner (≃ weak-PRF).
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Exponential notation

If u0, . . . , un−1, v0, . . . , vn−1 are q-bit integers:

auxv :=
∏
i

∏
j

ai ,j
ui,j xi ,j

vi,j

Consider M = a0,0a0,1a1,0a1,1a1,2x0,0x1,0x1,1 .

We denote it by M = a0b0110 a0b1111 x0b0010 x0b0111 = a(3,7)x (1,3).
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Algebraic Normal Form

Algebraic Normal Form (ANF). Any Boolean function f : Fs
2 → F2 admits a unique multivariate

polynomial form:

∀x ∈ Fs
2, f (x) =

∑
u∈Fs

2

αu(f )x
u .

Product of coordinates. For any F : Z2q → Z2q , and any m =
∑

i mi2i , recall:

x 7→ (F (x))m :=
∏
i

Fi (x)
mi .

In the following, we study (products of) coordinates of the inner product:

Fm,n : (a, x) 7→ (⟨a, x⟩)m .
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F2[a, x ] or F2[a][x ] ?

Fm,n : (Z2q )n × (Z2q )n −→ F2

(a, x) 7−→ (⟨a, x⟩)m .

If m = 2q−p : coordinate of index q− p
(LSB of the sample).

F2[a, x ].
Fm,n =

∑
u,v

αu,vauxv , αu,v ∈ F2.

F2[a][x ].

Fm,n =
∑
v

(∑
u

αu,vau

)
︸ ︷︷ ︸

αv

xv , αv ∈ F2[a].

Cost of linearisation ≤ #monomialsω = |Expx(F
m,n)|ω with Expx(F

m,n) = {v |αv ̸= 0} .

Linearisation is possible only if the ANF of each αv is known (We’ll get back to it. . . )
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Set of exponents of Fm,n

Ordered integer partitions. Let Sn
k = {v ∈ Nn :

∑n−1
i=0 vi = k} be the set of n-long

vectors that sum to k .

Theorem (Exponents of Fm,n).

Expx(F
m,n) ⊂

m⋃
k=1

Sn
k .

i.e. if αv ̸= 0 then v must satifsy
∑n−1

i=0 vi ≤ m.

Proven using [Braeken & Semaev FSE05].
If G (x) = x0 + x1 + · · ·+ xn−1 ∈ Z2q , then Expx(G

m) = Sn
m

Related to the properties of S-functions. [MouCanIndPre09]
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An attack that works and costs the same (in fact, a little less)

Number of monomials. |Expx(F
m,n)| ≤ |

⋃m
k=1 S

n
k | =

(n+m
m

)
.

Open question: we conjecture equality when m is a power of two.
Degree. deg(Fm,n) ≤ m. Equality holds when m ≤ n.

Recall over Z2q (when applicable):
(n+2q−p

2q−p

)
monomials. [Arora & Ge]

If we use the LSB of the sample (m = 2q−p), same number of monomials (Surprising!).

Working over F2 rather than Z2q : we gain at least 2q−p.
1 it’s a field.
2 operations are cheaper
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The general strategy

1 With
(n+2q−p

2q−p

)
samples, recover the q − p LSBs of each xi by linearisation.

2 Observe that each bit of ⟨a, x⟩ satisfies bj =
∑n−1

i=0 ai ,jxi ,j + cj where cj is a carry.
3 Compute cj from the known ai ,k ’s and recovered xi ,k ’s, k < j .
4 Solve a linear system in xi ,j only.
5 Repeat for increasing j .

The cost of steps 2 to 5 is negligible before the cost of step 1.
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Effective computation of the ANF

We improve Arora & Ge generically. . .

This is a priori hard:
Möbius transform is out of reach (the LUT cannot be fully computed/stored).
Direct computations using recursive formulas seem hopeless.

Our results

The ANF can be ‘understood’ for arbitrary large n and for m up to 16 by:

storing the ANF for n = m.
computing properties for arbitrary large n.
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Additional improvement of the attack

Default linearisation: one auxiliary variable per monomial xv in the ANF of Fm,n.

Example.

F (a, x) = αvxv + αv ′xv ′
+ αv ′′xv ′′

+ · · · αv , αv ′ , αv ′′ ∈ F2[a]

If αv = αv ′ = αv ′′ , then xv , xv ′
, xv ′′

appear/vanish together for any value of a.
It makes sense to introduce y = xv + xv ′

+ xv ′′
.

Less auxiliary variables: improved linearisation (data and time).
Ideally: compute the rank and a basis for {αv , v ∈ Exp(Fm,n)}. Work in progress

In practice, we compute the generating family Qm,n made of distinct αv ’s. m ≤ 16.
The average sparsity for both families (monomials, Qm,n). m ≤ 8.
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Our results: Upper bound on the rank

Ratio |Qm,n| /
(n+m

m

)
− 1 as a function of n, for n ∈ Jm, 4096K.

21 22 23 24 25 26 27 28 29 210 211 212

2 2

2 1

20

m = 2
m = 4
m = 8
m = 16
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Our results: Sparsity

Average fraction of terms in a random equation Fm,n
a (x) as a function of n.

21 22 23 24 25 26 27 28 29 210 211 212

2 7

2 5

2 3

2 1

Expx(Fm, n)
m = 2
m = 4
m = 8

m, n

m = 2
m = 4
m = 8

Expx(Fm, n)
m = 2
m = 4
m = 8

m, n

m = 2
m = 4
m = 8
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Improvements over Arora-Ge

Comparison to the linearisation attack by Arora & Ge using ω = 3.
and cost of modular addition/multiplication m = 2q−p.

m = 2q−p n Arora-Ge Our work
(≤ rank only)

Our work
(≤ rank and sparsity)

64 2103.4 297.8 287.2

8 128 2126.3 2121.8 2110.8

256 2149.7 2145.9 2134.7

64 2167.7 2157.2 Non-available
16 128 2211.7 2202.00 Non-available

256 2257.5 2250.1 Non-available
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Overview
Our result

The ANF (and additionnal properties) can be understood for arbitrary large n and for m up to 16.

NB: these m’s are used in practice e.g. m = 8 for SABER, m = 16 for LaKEY.

We take advantage of symmetries due to the commutativity of modular addition.

Observe that:

⟨(a0, a1), (x0, x1)⟩ = a0x0 + a1x1 = a1x1 + a0x0 = ⟨(a1, a0), (x1, x0)⟩.

More generally for any n and any permutation σ ∈ Sn, ⟨a, x⟩ = ⟨σ · a, σ · x⟩.

Observe that:

⟨(a0, a1, 0), (x0, x1, 0)⟩ = a0x0 + a1x1 = ⟨(a0, a1), (x0, x1)⟩.

More generally for any n ≤ n′, ⟨a||0n′−n, x ||0n′−n⟩n′ = ⟨a, x⟩n.

Boolean Modeling and Analysis of Learning With Rounding 23 / 31



Overview
Our result

The ANF (and additionnal properties) can be understood for arbitrary large n and for m up to 16.

NB: these m’s are used in practice e.g. m = 8 for SABER, m = 16 for LaKEY.

We take advantage of symmetries due to the commutativity of modular addition.

Observe that:

⟨(a0, a1), (x0, x1)⟩ = a0x0 + a1x1 = a1x1 + a0x0 = ⟨(a1, a0), (x1, x0)⟩.

More generally for any n and any permutation σ ∈ Sn, ⟨a, x⟩ = ⟨σ · a, σ · x⟩.

Observe that:

⟨(a0, a1, 0), (x0, x1, 0)⟩ = a0x0 + a1x1 = ⟨(a0, a1), (x0, x1)⟩.

More generally for any n ≤ n′, ⟨a||0n′−n, x ||0n′−n⟩n′ = ⟨a, x⟩n.

Boolean Modeling and Analysis of Learning With Rounding 23 / 31



Overview
Our result

The ANF (and additionnal properties) can be understood for arbitrary large n and for m up to 16.

NB: these m’s are used in practice e.g. m = 8 for SABER, m = 16 for LaKEY.

We take advantage of symmetries due to the commutativity of modular addition.

Observe that:

⟨(a0, a1), (x0, x1)⟩ = a0x0 + a1x1 = a1x1 + a0x0 = ⟨(a1, a0), (x1, x0)⟩.

More generally for any n and any permutation σ ∈ Sn, ⟨a, x⟩ = ⟨σ · a, σ · x⟩.

Observe that:

⟨(a0, a1, 0), (x0, x1, 0)⟩ = a0x0 + a1x1 = ⟨(a0, a1), (x0, x1)⟩.

More generally for any n ≤ n′, ⟨a||0n′−n, x ||0n′−n⟩n′ = ⟨a, x⟩n.

Boolean Modeling and Analysis of Learning With Rounding 23 / 31



Overview
Our result

The ANF (and additionnal properties) can be understood for arbitrary large n and for m up to 16.

NB: these m’s are used in practice e.g. m = 8 for SABER, m = 16 for LaKEY.

We take advantage of symmetries due to the commutativity of modular addition.

Observe that:

⟨(a0, a1), (x0, x1)⟩ = a0x0 + a1x1 = a1x1 + a0x0 = ⟨(a1, a0), (x1, x0)⟩.

More generally for any n and any permutation σ ∈ Sn, ⟨a, x⟩ = ⟨σ · a, σ · x⟩.

Observe that:

⟨(a0, a1, 0), (x0, x1, 0)⟩ = a0x0 + a1x1 = ⟨(a0, a1), (x0, x1)⟩.

More generally for any n ≤ n′, ⟨a||0n′−n, x ||0n′−n⟩n′ = ⟨a, x⟩n.

Boolean Modeling and Analysis of Learning With Rounding 23 / 31



Reduction to a system of representatives

The group Sn acts on vectors of length n: σ · u := (uσ−1(0), . . . , uσ−1(n−1)).

F (a, x) is Sn-invariant if F (a, x) = F (σ · a, σ · x) for all σ ∈ Sn.

Example. The function F : (a, x) 7→ a(1,0)x (3,0) + a(0,1)x (0,3) is S2-invariant (not symmetric!)

Indeed, S2 = {id, (0 1)} and (0 1) · F = F ((0 1) · a, (0 1) · x) = F (a, x) .

α(1,0),(3,0) = α(0,1),(0,3). α(3,0) = a(1,0) ̸= a(0,1) = α(0,3).

For any m, n, Fm,n is Sn-invariant. Sn-invariance is equivalent to:

∀u, v , σ, α(σ·u,σ·v) = α(u,v) αu,v ∈ F2

and to ∀u, σ, σ · αv = ασ−1·v αv ∈ F2[a]

Allows to represent the ANF in a compact way.
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Scaling

How do we get results for arbitrary n?

Example. Let’s look at the S2-invariant function

F (2)((a0, a1), (x0, x1)) = a(1,0)x (3,0) + a(0,1)x (0,3) .

then there exists a ≈ unique S3-invariant function F (3) such that

((a0, a1), (x0, x1)) 7→ F (3)((a0, a1, 0), (x0, x1, 0))

is equal to F (2):

F (3)((a0, a1, a2), (x0, x1, x2)) 7→ a(1,0,0)x (3,0,0) + a(0,1,0)x (0,3,0) + a(0,0,1)x (0,0,3) .

(Properties of) Fm,n can be derived from Fm,m.
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Group actions

Let G be a group acting on a set E . Let x ∈ E .

Orbit. Orb(x) := {σ · x , σ ∈ G} ⊂ E .

Stabilizer. Stab(x) := {σ, σ · x = x} < G.

Example. Let v = (3, 1, 1). Then Orb(v) = {(3, 1, 1), (1, 3, 1), (1, 1, 3)} and Stab(v) = {id, (1 2)}.

Important properties.
The set of orbits {Orb(x), x ∈ E} is a partition of E.

It induces an equivalence relation: x ∼ x ′ if and only if x ′ ∈ Orb(x).

For any x ∈ E ,
|Orb(x)| · |Stab(x)| = |G| .

Boolean Modeling and Analysis of Learning With Rounding 27 / 31



Effective computation of the ANF

Recall: Sn
m ordered partitions of length n of m.

Fm,n(a, x) = ⟨a, x⟩m =
(∑

i

ai × xi
)m

=
[BraSem05]

∑
c∈Sn

m

∏
i

(ai × xi )
ci .

Let C n
m be a system of representatives (unordered partitions):

Fm,n = . . . =
∑

c∈C n
m

∑
c′∈Orb(c)

Hc′︷ ︸︸ ︷∏
i

(ai × xi )
c′i

︸ ︷︷ ︸
GcWe observe:

Gc is Sn-invariant.

Hσ·c = σ−1 · Hc .
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Effective computation of the ANF

Theorem. Let c ∈ Zn
2q , (u, v) ∈ Zn

2q × Zn
2q . Define Ec(u, v) := Exp(Hc) ∩ Orb(u, v).

α(u,v)(Gc) =
|Ec(u, v)| n!

|Stab(c)| |Orb(u, v)| mod 2 .

We provide algorithms (and implementations) to:

(i) compute the ANF of Hc⋆ for c⋆ ∈ C n
m.

(ii) compute a SoR of the ANF of Gc (Theorem). {(u, v)⋆, α(u,v)⋆(Gc) = 1}.
(iii) compute a SoR of the ANF of Fm,n from the Gc ’s. {(u, v)⋆, α(u,v)⋆(F

m,n) = 1}.
(iv) compute {(v⋆, αv⋆(Fm,n) ̸= 0)}. (non-trivial from (iii)).

(v) compute {α ∈ Expx(F
m,n)}/ ∼ ⊂ F2[a]. (even less trivial).
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Ex. of scaling: number of monomials

Recall. For each random a, if we can compute the ANF of Fm,n
a , we obtain an equation in the secret x :

Fm,n(a, x) =
∑

v∈(Fq2)n
αv (F

m,n)(a) xv = LSB of the sample .

Our algorithm (iv) returns {(v⋆, αv⋆ ̸= 0)}.

Nr of monomials = |{v : αv ̸= 0}| =
∑

v⋆, αv⋆ ̸=0 Orb(αv⋆)
(

n
|Supp(v⋆)|

)
In practice, when m is a power of two, this is always equal to the upper bound

(
n+m
m

)
− 1.

In general, scaling is not the hard part (even for other properties).

Boolean Modeling and Analysis of Learning With Rounding 30 / 31



Ex. of scaling: number of monomials

Recall. For each random a, if we can compute the ANF of Fm,n
a , we obtain an equation in the secret x :

Fm,n(a, x) =
∑

v∈(Fq2)n
αv (F

m,n)(a) xv = LSB of the sample .

Our algorithm (iv) returns {(v⋆, αv⋆ ̸= 0)}.

Nr of monomials = |{v : αv ̸= 0}| =
∑

v⋆, αv⋆ ̸=0 Orb(αv⋆)
(

n
|Supp(v⋆)|

)

In practice, when m is a power of two, this is always equal to the upper bound
(
n+m
m

)
− 1.

In general, scaling is not the hard part (even for other properties).

Boolean Modeling and Analysis of Learning With Rounding 30 / 31



Ex. of scaling: number of monomials

Recall. For each random a, if we can compute the ANF of Fm,n
a , we obtain an equation in the secret x :

Fm,n(a, x) =
∑

v∈(Fq2)n
αv (F

m,n)(a) xv = LSB of the sample .

Our algorithm (iv) returns {(v⋆, αv⋆ ̸= 0)}.

Nr of monomials = |{v : αv ̸= 0}| =
∑

v⋆, αv⋆ ̸=0 Orb(αv⋆)
(

n
|Supp(v⋆)|

)
In practice, when m is a power of two, this is always equal to the upper bound

(
n+m
m

)
− 1.

In general, scaling is not the hard part (even for other properties).

Boolean Modeling and Analysis of Learning With Rounding 30 / 31



Conclusion

Results

Deterministic noise impacts attacks.

Generic improvement (and “correction”) of Arora & Ge:

same number of monomials + working over F2.
computation of additional parameters.

Many open questions

Understanding the ANF even better (e.g. rank).

Help us solve this system (with less data)!

E.g. super structured ANF guides guess-and-solve strategies.

More applications of group actions.
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